The sheaf category as a localized category #
In this file, it is shown that the category of sheaves Sheaf J A is a localization
of the category Presheaf J A with respect to the class J.W of morphisms
of presheaves which become isomorphisms after applying the sheafification functor.
@[reducible, inline]
abbrev
CategoryTheory.GrothendieckTopology.W
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
:
The class of morphisms of presheaves which become isomorphisms after sheafification.
(See GrothendieckTopology.W_iff.)
Equations
Instances For
theorem
CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
(A : Type u_2)
[Category.{v_2, u_2} A]
:
J.W = ObjectProperty.isLocal fun (x : Functor Cแตแต A) => x โ Set.range (sheafToPresheaf J A).obj
@[deprecated CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj (since := "2025-11-20")]
theorem
CategoryTheory.GrothendieckTopology.W_eq_W_range_sheafToPresheaf_obj
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
(A : Type u_2)
[Category.{v_2, u_2} A]
:
J.W = ObjectProperty.isLocal fun (x : Functor Cแตแต A) => x โ Set.range (sheafToPresheaf J A).obj
Alias of CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj.
theorem
CategoryTheory.GrothendieckTopology.W_sheafToPresheaf_map_iff_isIso
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
{Fโ Fโ : Sheaf J A}
(ฯ : Fโ โถ Fโ)
:
theorem
CategoryTheory.GrothendieckTopology.W_adj_unit_app
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
{G : Functor (Functor Cแตแต A) (Sheaf J A)}
(adj : G โฃ sheafToPresheaf J A)
(P : Functor Cแตแต A)
:
theorem
CategoryTheory.GrothendieckTopology.W_iff_isIso_map_of_adjunction
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
{G : Functor (Functor Cแตแต A) (Sheaf J A)}
(adj : G โฃ sheafToPresheaf J A)
{Pโ Pโ : Functor Cแตแต A}
(f : Pโ โถ Pโ)
:
theorem
CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms_of_adjunction
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
{G : Functor (Functor Cแตแต A) (Sheaf J A)}
(adj : G โฃ sheafToPresheaf J A)
:
theorem
CategoryTheory.GrothendieckTopology.W_toSheafify
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
[HasWeakSheafify J A]
(P : Functor Cแตแต A)
:
J.W (CategoryTheory.toSheafify J P)
theorem
CategoryTheory.GrothendieckTopology.W_iff
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
[HasWeakSheafify J A]
{Pโ Pโ : Functor Cแตแต A}
(f : Pโ โถ Pโ)
:
theorem
CategoryTheory.GrothendieckTopology.W_eq_inverseImage_isomorphisms
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
(A : Type u_2)
[Category.{v_2, u_2} A]
[HasWeakSheafify J A]
:
instance
CategoryTheory.GrothendieckTopology.instIsLocalizationFunctorOppositeSheafPresheafToSheafW
{C : Type u_1}
[Category.{v_1, u_1} C]
(J : GrothendieckTopology C)
{A : Type u_2}
[Category.{v_2, u_2} A]
[HasWeakSheafify J A]
:
(presheafToSheaf J A).IsLocalization J.W