Documentation

Mathlib.CategoryTheory.Sites.Localization

The sheaf category as a localized category #

In this file, it is shown that the category of sheaves Sheaf J A is a localization of the category Presheaf J A with respect to the class J.W of morphisms of presheaves which become isomorphisms after applying the sheafification functor.

@[reducible, inline]

The class of morphisms of presheaves which become isomorphisms after sheafification. (See GrothendieckTopology.W_iff.)

Equations
    Instances For
      @[deprecated CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj (since := "2025-11-20")]

      Alias of CategoryTheory.GrothendieckTopology.W_eq_isLocal_range_sheafToPresheaf_obj.

      theorem CategoryTheory.GrothendieckTopology.W_sheafToPresheaf_map_iff_isIso {C : Type u_1} [Category.{v_1, u_1} C] (J : GrothendieckTopology C) {A : Type u_2} [Category.{v_2, u_2} A] {Fโ‚ Fโ‚‚ : Sheaf J A} (ฯ† : Fโ‚ โŸถ Fโ‚‚) :
      J.W ((sheafToPresheaf J A).map ฯ†) โ†” IsIso ฯ†