Documentation

Mathlib.CategoryTheory.Sites.Plus

The plus construction for presheaves. #

This file contains the construction of P⁺, for a presheaf P : Cįµ’įµ– ℤ D where C is endowed with a Grothendieck topology J.

See https://stacks.math.columbia.edu/tag/00W1 for details.

The diagram whose colimit defines the values of plus.

Equations
    Instances For
      def CategoryTheory.GrothendieckTopology.diagramPullback {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] (P : Functor Cįµ’įµ– D) {X Y : C} (f : X ⟶ Y) :
      J.diagram P Y ⟶ (J.pullback f).op.comp (J.diagram P X)

      A helper definition used to define the morphisms for plus.

      Equations
        Instances For
          def CategoryTheory.GrothendieckTopology.diagramNatTrans {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] {P Q : Functor Cįµ’įµ– D} (Ī· : P ⟶ Q) (X : C) :
          J.diagram P X ⟶ J.diagram Q X

          A natural transformation P ⟶ Q induces a natural transformation between diagrams whose colimits define the values of plus.

          Equations
            Instances For

              J.diagram P, as a functor in P.

              Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.GrothendieckTopology.diagramFunctor_map {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] (X : C) {Xāœ Yāœ : Functor Cįµ’įµ– D} (Ī· : Xāœ ⟶ Yāœ) :
                  (J.diagramFunctor D X).map Ī· = J.diagramNatTrans Ī· X

                  The plus construction, associating a presheaf to any presheaf. See plusFunctor below for a functorial version.

                  Equations
                    Instances For

                      An auxiliary definition used in plus below.

                      Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.GrothendieckTopology.plusMap_comp {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [āˆ€ (X : C), Limits.HasColimitsOfShape (J.Cover X)įµ’įµ– D] {P Q R : Functor Cįµ’įµ– D} (Ī· : P ⟶ Q) (γ : Q ⟶ R) :

                          The plus construction, a functor sending P to J.plusObj P.

                          Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.GrothendieckTopology.plusFunctor_map {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [āˆ€ (X : C), Limits.HasColimitsOfShape (J.Cover X)įµ’įµ– D] {Xāœ Yāœ : Functor Cįµ’įµ– D} (Ī· : Xāœ ⟶ Yāœ) :
                              (J.plusFunctor D).map Ī· = J.plusMap Ī·

                              The canonical map from P to J.plusObj P. See toPlusNatTrans for a functorial version.

                              Equations
                                Instances For

                                  The natural transformation from the identity functor to plus.

                                  Equations
                                    Instances For
                                      @[simp]

                                      (P ⟶ P⁺)⁺ = P⁺ ⟶ P⁺⁺

                                      The natural isomorphism between P and P⁺ when P is a sheaf.

                                      Equations
                                        Instances For

                                          Lift a morphism P ⟶ Q to P⁺ ⟶ Q when Q is a sheaf.

                                          Equations
                                            Instances For
                                              theorem CategoryTheory.GrothendieckTopology.plusLift_unique {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [āˆ€ (X : C), Limits.HasColimitsOfShape (J.Cover X)įµ’įµ– D] {P Q : Functor Cįµ’įµ– D} (Ī· : P ⟶ Q) (hQ : Presheaf.IsSheaf J Q) (γ : J.plusObj P ⟶ Q) (hγ : CategoryStruct.comp (J.toPlus P) γ = Ī·) :
                                              γ = J.plusLift η hQ
                                              theorem CategoryTheory.GrothendieckTopology.plus_hom_ext {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [āˆ€ (X : C), Limits.HasColimitsOfShape (J.Cover X)įµ’įµ– D] {P Q : Functor Cįµ’įµ– D} (Ī· γ : J.plusObj P ⟶ Q) (hQ : Presheaf.IsSheaf J Q) (h : CategoryStruct.comp (J.toPlus P) Ī· = CategoryStruct.comp (J.toPlus P) γ) :
                                              η = γ
                                              @[simp]
                                              theorem CategoryTheory.GrothendieckTopology.plusMap_plusLift {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w} [Category.{w', w} D] [āˆ€ (P : Functor Cįµ’įµ– D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [āˆ€ (X : C), Limits.HasColimitsOfShape (J.Cover X)įµ’įµ– D] {P Q R : Functor Cįµ’įµ– D} (Ī· : P ⟶ Q) (γ : Q ⟶ R) (hR : Presheaf.IsSheaf J R) :
                                              CategoryStruct.comp (J.plusMap η) (J.plusLift γ hR) = J.plusLift (CategoryStruct.comp η γ) hR