Documentation

Mathlib.Combinatorics.SimpleGraph.Dart

Darts in graphs #

A Dart or half-edge or bond in a graph is an ordered pair of adjacent vertices, regarded as an oriented edge. This file defines darts and proves some of their basic properties.

structure SimpleGraph.Dart {V : Type u_1} (G : SimpleGraph V) extends V ร— V :
Type u_1

A Dart is an oriented edge, implemented as an ordered pair of adjacent vertices. This terminology comes from combinatorial maps, and they are also known as "half-edges" or "bonds."

Instances For
    instance SimpleGraph.instDecidableEqDart {Vโœ : Type u_2} {Gโœ : SimpleGraph Vโœ} [DecidableEq Vโœ] :
    DecidableEq Gโœ.Dart
    Equations
      def SimpleGraph.instDecidableEqDart.decEq {Vโœ : Type u_2} {Gโœ : SimpleGraph Vโœ} [DecidableEq Vโœ] (xโœ xโœยน : Gโœ.Dart) :
      Decidable (xโœ = xโœยน)
      Equations
        Instances For
          theorem SimpleGraph.Dart.ext_iff {V : Type u_1} {G : SimpleGraph V} (dโ‚ dโ‚‚ : G.Dart) :
          dโ‚ = dโ‚‚ โ†” dโ‚.toProd = dโ‚‚.toProd
          theorem SimpleGraph.Dart.ext {V : Type u_1} {G : SimpleGraph V} (dโ‚ dโ‚‚ : G.Dart) (h : dโ‚.toProd = dโ‚‚.toProd) :
          dโ‚ = dโ‚‚
          @[simp]
          theorem SimpleGraph.Dart.fst_ne_snd {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :
          @[simp]
          theorem SimpleGraph.Dart.snd_ne_fst {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :
          def SimpleGraph.Dart.edge {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :

          The edge associated to the dart.

          Equations
            Instances For
              @[simp]
              theorem SimpleGraph.Dart.edge_mk {V : Type u_1} {G : SimpleGraph V} {p : V ร— V} (h : G.Adj p.1 p.2) :
              { toProd := p, adj := h }.edge = s(p.1, p.2)
              def SimpleGraph.Dart.symm {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :

              The dart with reversed orientation from a given dart.

              Equations
                Instances For
                  @[simp]
                  theorem SimpleGraph.Dart.symm_mk {V : Type u_1} {G : SimpleGraph V} {p : V ร— V} (h : G.Adj p.1 p.2) :
                  { toProd := p, adj := h }.symm = { toProd := p.swap, adj := โ‹ฏ }
                  @[simp]
                  theorem SimpleGraph.Dart.edge_symm {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :
                  @[simp]
                  theorem SimpleGraph.Dart.symm_symm {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :
                  d.symm.symm = d
                  theorem SimpleGraph.Dart.symm_ne {V : Type u_1} {G : SimpleGraph V} (d : G.Dart) :
                  theorem SimpleGraph.dart_edge_eq_iff {V : Type u_1} {G : SimpleGraph V} (dโ‚ dโ‚‚ : G.Dart) :
                  dโ‚.edge = dโ‚‚.edge โ†” dโ‚ = dโ‚‚ โˆจ dโ‚ = dโ‚‚.symm
                  def SimpleGraph.DartAdj {V : Type u_1} (G : SimpleGraph V) (d d' : G.Dart) :

                  Two darts are said to be adjacent if they could be consecutive darts in a walk -- that is, the first dart's second vertex is equal to the second dart's first vertex.

                  Equations
                    Instances For
                      def SimpleGraph.dartOfNeighborSet {V : Type u_1} (G : SimpleGraph V) (v : V) (w : โ†‘(G.neighborSet v)) :

                      For a given vertex v, this is the bijective map from the neighbor set at v to the darts d with d.fst = v.

                      Equations
                        Instances For
                          @[simp]
                          theorem SimpleGraph.dartOfNeighborSet_toProd {V : Type u_1} (G : SimpleGraph V) (v : V) (w : โ†‘(G.neighborSet v)) :
                          (G.dartOfNeighborSet v w).toProd = (v, โ†‘w)