Documentation

Mathlib.Combinatorics.SimpleGraph.DeleteEdges

Edge deletion #

This file defines operations deleting the edges of a simple graph and proves theorems in the finite case.

Main definitions #

def SimpleGraph.deleteEdges {V : Type u_1} (G : SimpleGraph V) (s : Set (Sym2 V)) :

Given a set of vertex pairs, remove all of the corresponding edges from the graph's edge set, if present.

See also: SimpleGraph.Subgraph.deleteEdges.

Equations
    Instances For
      @[simp]
      theorem SimpleGraph.deleteEdges_adj {V : Type u_1} {v w : V} {G : SimpleGraph V} {s : Set (Sym2 V)} :
      (G.deleteEdges s).Adj v w โ†” G.Adj v w โˆง s(v, w) โˆ‰ s
      theorem SimpleGraph.deleteEdges_anti {V : Type u_1} {G : SimpleGraph V} {sโ‚ sโ‚‚ : Set (Sym2 V)} (h : sโ‚ โІ sโ‚‚) :
      G.deleteEdges sโ‚‚ โ‰ค G.deleteEdges sโ‚
      @[simp]
      theorem SimpleGraph.edgeFinset_deleteEdges {V : Type u_1} {G : SimpleGraph V} [DecidableEq V] [Fintype โ†‘G.edgeSet] (s : Finset (Sym2 V)) [Fintype โ†‘(G.deleteEdges โ†‘s).edgeSet] :
      @[simp]
      theorem SimpleGraph.deleteEdges_sup {V : Type u_1} (G H : SimpleGraph V) (s : Set (Sym2 V)) :
      (G โŠ” H).deleteEdges s = G.deleteEdges s โŠ” H.deleteEdges s

      Given a vertex x, remove the edges incident to x from the edge set.

      Equations
        Instances For
          theorem SimpleGraph.deleteIncidenceSet_adj {V : Type u_1} {G : SimpleGraph V} {x vโ‚ vโ‚‚ : V} :
          (G.deleteIncidenceSet x).Adj vโ‚ vโ‚‚ โ†” G.Adj vโ‚ vโ‚‚ โˆง vโ‚ โ‰  x โˆง vโ‚‚ โ‰  x

          The edge set of G.deleteIncidenceSet x is the edge set of G set difference the incidence set of the vertex x.

          The support of G.deleteIncidenceSet x is a subset of the support of G set difference the singleton set {x}.

          theorem SimpleGraph.induce_deleteIncidenceSet_of_notMem {V : Type u_1} (G : SimpleGraph V) {s : Set V} {x : V} (h : x โˆ‰ s) :

          If the vertex x is not in the set s, then the induced subgraph in G.deleteIncidenceSet x by s is equal to the induced subgraph in G by s.

          Deleting the incidence set of the vertex x retains the same number of edges as in the induced subgraph of the vertices {x}แถœ.

          The finite edge set of G.deleteIncidenceSet x is the finite edge set of the simple graph G set difference the finite incidence set of the vertex x.

          Deleting the incident set of the vertex x deletes exactly G.degree x edges from the edge set of the simple graph G.

          theorem SimpleGraph.edgeFinset_deleteIncidenceSet_eq_filter {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) [DecidableRel G.Adj] (x : V) :
          (G.deleteIncidenceSet x).edgeFinset = {x_1 โˆˆ G.edgeFinset | x โˆ‰ x_1}

          Deleting the incident set of the vertex x is equivalent to filtering the edges of the simple graph G that do not contain x.

          The support of G.deleteIncidenceSet x is at most 1 less than the support of the simple graph G.

          def SimpleGraph.DeleteFar {V : Type u_1} (G : SimpleGraph V) {๐•œ : Type u_2} [Ring ๐•œ] [PartialOrder ๐•œ] [Fintype โ†‘G.edgeSet] (p : SimpleGraph V โ†’ Prop) (r : ๐•œ) :

          A graph is r-delete-far from a property p if we must delete at least r edges from it to get a graph with the property p.

          Equations
            Instances For
              theorem SimpleGraph.deleteFar_iff {V : Type u_1} {G : SimpleGraph V} {๐•œ : Type u_2} [Ring ๐•œ] [PartialOrder ๐•œ] [Fintype โ†‘G.edgeSet] {p : SimpleGraph V โ†’ Prop} {r : ๐•œ} [Fintype (Sym2 V)] :
              G.DeleteFar p r โ†” โˆ€ โฆƒH : SimpleGraph Vโฆ„ [inst : DecidableRel H.Adj], H โ‰ค G โ†’ p H โ†’ r โ‰ค โ†‘G.edgeFinset.card - โ†‘H.edgeFinset.card
              theorem SimpleGraph.DeleteFar.le_card_sub_card {V : Type u_1} {G : SimpleGraph V} {๐•œ : Type u_2} [Ring ๐•œ] [PartialOrder ๐•œ] [Fintype โ†‘G.edgeSet] {p : SimpleGraph V โ†’ Prop} {r : ๐•œ} [Fintype (Sym2 V)] :
              G.DeleteFar p r โ†’ โˆ€ โฆƒH : SimpleGraph Vโฆ„ [inst : DecidableRel H.Adj], H โ‰ค G โ†’ p H โ†’ r โ‰ค โ†‘G.edgeFinset.card - โ†‘H.edgeFinset.card

              Alias of the forward direction of SimpleGraph.deleteFar_iff.

              theorem SimpleGraph.DeleteFar.mono {V : Type u_1} {G : SimpleGraph V} {๐•œ : Type u_2} [Ring ๐•œ] [PartialOrder ๐•œ] [Fintype โ†‘G.edgeSet] {p : SimpleGraph V โ†’ Prop} {rโ‚ rโ‚‚ : ๐•œ} (h : G.DeleteFar p rโ‚‚) (hr : rโ‚ โ‰ค rโ‚‚) :
              G.DeleteFar p rโ‚
              theorem SimpleGraph.DeleteFar.le_card_edgeFinset {V : Type u_1} {G : SimpleGraph V} {๐•œ : Type u_2} [Ring ๐•œ] [PartialOrder ๐•œ] [Fintype โ†‘G.edgeSet] {p : SimpleGraph V โ†’ Prop} {r : ๐•œ} (h : G.DeleteFar p r) (hp : p โŠฅ) :