Documentation

Mathlib.Combinatorics.SimpleGraph.Hamiltonian

Hamiltonian Graphs #

In this file we introduce Hamiltonian paths, cycles and graphs.

Main definitions #

def SimpleGraph.Walk.IsHamiltonian {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} (p : G.Walk a b) :

A Hamiltonian path is a walk p that visits every vertex exactly once. Note that while this definition doesn't contain that p is a path, p.isPath gives that.

Equations
    Instances For
      theorem SimpleGraph.Walk.IsHamiltonian.map {α : Type u_1} {β : Type u_2} [DecidableEq α] [DecidableEq β] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} {H : SimpleGraph β} (f : G →g H) (hf : Function.Bijective f) (hp : p.IsHamiltonian) :
      @[simp]
      theorem SimpleGraph.Walk.IsHamiltonian.mem_support {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) (c : α) :

      A Hamiltonian path visits every vertex.

      theorem SimpleGraph.Walk.IsHamiltonian.isPath {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) :

      Hamiltonian paths are paths.

      theorem SimpleGraph.Walk.IsPath.isHamiltonian_of_mem {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsPath) (hp' : ∀ (w : α), w p.support) :

      A path whose support contains every vertex is Hamiltonian.

      theorem SimpleGraph.Walk.IsPath.isHamiltonian_iff {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsPath) :
      p.IsHamiltonian ∀ (w : α), w p.support
      def SimpleGraph.Walk.IsHamiltonian.fintype {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) :

      If a path p is Hamiltonian then its vertex set must be finite.

      Equations
        Instances For
          theorem SimpleGraph.Walk.IsHamiltonian.support_toFinset {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} [Fintype α] (hp : p.IsHamiltonian) :

          The support of a Hamiltonian walk is the entire vertex set.

          theorem SimpleGraph.Walk.IsHamiltonian.length_eq {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} [Fintype α] (hp : p.IsHamiltonian) :

          The length of a Hamiltonian path is one less than the number of vertices of the graph.

          theorem SimpleGraph.Walk.IsHamiltonian.length_support {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} [Fintype α] (hp : p.IsHamiltonian) :

          The length of the support of a Hamiltonian path equals the number of vertices of the graph.

          def SimpleGraph.Walk.IsHamiltonian.supportGetEquiv {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) :

          If a path p is Hamiltonian, then p.support.get defines an equivalence between Fin p.support.length and α.

          Equations
            Instances For
              @[simp]
              theorem SimpleGraph.Walk.IsHamiltonian.supportGetEquiv_symm_apply_val {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) (a✝ : α) :
              @[simp]
              theorem SimpleGraph.Walk.IsHamiltonian.supportGetEquiv_apply {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) (i : Fin p.support.length) :
              def SimpleGraph.Walk.IsHamiltonian.getVertEquiv {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) :

              If a path p is Hamiltonian, then p.getVert defines an equivalence between Fin p.support.length and α.

              Equations
                Instances For
                  @[simp]
                  theorem SimpleGraph.Walk.IsHamiltonian.getVertEquiv_apply {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) (a✝ : Fin p.support.length) :
                  hp.getVertEquiv a✝ = (p.getVert Fin.val) a✝
                  @[simp]
                  theorem SimpleGraph.Walk.IsHamiltonian.getVertEquiv_symm_apply {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a b : α} {p : G.Walk a b} (hp : p.IsHamiltonian) (a✝ : α) :
                  structure SimpleGraph.Walk.IsHamiltonianCycle {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a : α} (p : G.Walk a a) extends p.IsCycle :

                  A Hamiltonian cycle is a cycle that visits every vertex once.

                  Instances For
                    theorem SimpleGraph.Walk.IsHamiltonianCycle.map {α : Type u_1} {β : Type u_2} [DecidableEq α] [DecidableEq β] {G : SimpleGraph α} {a : α} {p : G.Walk a a} {H : SimpleGraph β} (f : G →g H) (hf : Function.Bijective f) (hp : p.IsHamiltonianCycle) :
                    theorem SimpleGraph.Walk.IsHamiltonianCycle.mem_support {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a : α} {p : G.Walk a a} (hp : p.IsHamiltonianCycle) (b : α) :

                    A Hamiltonian cycle visits every vertex.

                    theorem SimpleGraph.Walk.IsHamiltonianCycle.length_eq {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} {a : α} {p : G.Walk a a} [Fintype α] (hp : p.IsHamiltonianCycle) :

                    The length of a Hamiltonian cycle is the number of vertices.

                    A Hamiltonian graph is a graph that contains a Hamiltonian cycle.

                    By convention, the singleton graph is considered to be Hamiltonian.

                    Equations
                      Instances For
                        theorem SimpleGraph.IsHamiltonian.mono {α : Type u_1} [DecidableEq α] {G : SimpleGraph α} [Fintype α] {H : SimpleGraph α} (hGH : G H) (hG : G.IsHamiltonian) :
                        theorem SimpleGraph.not_isHamiltonian_of_isBridge {V : Type u_3} [Fintype V] [DecidableEq V] (G : SimpleGraph V) (h_order : 3 Fintype.card V) (e : Sym2 V) (he : G.IsBridge e) :

                        A finite simple graph with at least three vertices and a bridge is not Hamiltonian.

                        More precisely, let G : SimpleGraph V be a simple graph on a finite vertex type V. If Fintype.card V ≥ 3 and there exists an edge of G which is a bridge, then G does not admit a Hamiltonian cycle, i.e. ¬ G.IsHamiltonian.