Documentation

Mathlib.Computability.Language

Languages #

This file contains the definition and operations on formal languages over an alphabet. Note that "strings" are implemented as lists over the alphabet.

Union and concatenation define a Kleene algebra over the languages.

In addition to that, we define a reversal of a language and prove that it behaves well with respect to other language operations.

Notation #

Main definitions #

Main theorems #

def Language (α : Type u_4) :
Type u_4

A language is a set of strings over an alphabet.

Equations
    Instances For
      instance Language.instInsertList {α : Type u_1} :
      Insert (List α) (Language α)
      Equations
        instance Language.instZero {α : Type u_1} :

        Zero language has no elements.

        Equations
          instance Language.instOne {α : Type u_1} :

          1 : Language α contains only one element [].

          Equations
            instance Language.instAdd {α : Type u_1} :

            The sum of two languages is their union.

            Equations
              instance Language.instSub {α : Type u_1} :

              The subtraction of two languages is their difference.

              Equations
                instance Language.instMul {α : Type u_1} :

                The product of two languages l and m is the language made of the strings x ++ y where x ∈ l and y ∈ m.

                Equations
                  theorem Language.add_def {α : Type u_1} (l m : Language α) :
                  l + m = l m
                  theorem Language.sub_def {α : Type u_1} (l m : Language α) :
                  l - m = l \ m
                  theorem Language.mul_def {α : Type u_1} (l m : Language α) :
                  l * m = Set.image2 (fun (x1 x2 : List α) => x1 ++ x2) l m
                  instance Language.instKStar {α : Type u_1} :

                  The Kleene star of a language L is the set of all strings which can be written by concatenating strings from L.

                  Equations
                    theorem Language.kstar_def {α : Type u_1} (l : Language α) :
                    KStar.kstar l = {x : List α | ∃ (L : List (List α)), x = L.flatten yL, y l}
                    theorem Language.ext {α : Type u_1} {l m : Language α} (h : ∀ (x : List α), x l x m) :
                    l = m
                    theorem Language.ext_iff {α : Type u_1} {l m : Language α} :
                    l = m ∀ (x : List α), x l x m
                    @[simp]
                    theorem Language.notMem_zero {α : Type u_1} (x : List α) :
                    x0
                    @[simp]
                    theorem Language.mem_one {α : Type u_1} (x : List α) :
                    x 1 x = []
                    theorem Language.mem_add {α : Type u_1} (l m : Language α) (x : List α) :
                    x l + m x l x m
                    theorem Language.mem_sub {α : Type u_1} (l m : Language α) (x : List α) :
                    x l - m x l xm
                    theorem Language.mem_mul {α : Type u_1} {l m : Language α} {x : List α} :
                    x l * m al, bm, a ++ b = x
                    theorem Language.append_mem_mul {α : Type u_1} {l m : Language α} {a b : List α} :
                    a lb ma ++ b l * m
                    theorem Language.mem_kstar {α : Type u_1} {l : Language α} {x : List α} :
                    x KStar.kstar l ∃ (L : List (List α)), x = L.flatten yL, y l
                    theorem Language.join_mem_kstar {α : Type u_1} {l : Language α} {L : List (List α)} (h : yL, y l) :
                    instance Language.instSemiring {α : Type u_1} :
                    Equations
                      @[simp]
                      theorem Language.add_self {α : Type u_1} (l : Language α) :
                      l + l = l
                      def Language.map {α : Type u_1} {β : Type u_2} (f : αβ) :

                      Maps the alphabet of a language.

                      Equations
                        Instances For
                          @[simp]
                          theorem Language.map_id {α : Type u_1} (l : Language α) :
                          (map id) l = l
                          @[simp]
                          theorem Language.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} (g : βγ) (f : αβ) (l : Language α) :
                          (map g) ((map f) l) = (map (g f)) l
                          theorem Language.mem_kstar_iff_exists_nonempty {α : Type u_1} {l : Language α} {x : List α} :
                          x KStar.kstar l ∃ (S : List (List α)), x = S.flatten yS, y l y []
                          theorem Language.kstar_def_nonempty {α : Type u_1} (l : Language α) :
                          KStar.kstar l = {x : List α | ∃ (S : List (List α)), x = S.flatten yS, y l y []}
                          theorem Language.le_iff {α : Type u_1} (l m : Language α) :
                          l m l + m = m
                          @[deprecated mul_le_mul' (since := "2025-10-26")]
                          theorem Language.le_mul_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
                          l₁ m₁l₂ m₂l₁ * l₂ m₁ * m₂
                          theorem Language.mem_iSup {α : Type u_1} {ι : Sort v} {l : ιLanguage α} {x : List α} :
                          x ⨆ (i : ι), l i ∃ (i : ι), x l i
                          theorem Language.iSup_mul {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
                          (⨆ (i : ι), l i) * m = ⨆ (i : ι), l i * m
                          theorem Language.mul_iSup {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
                          m * ⨆ (i : ι), l i = ⨆ (i : ι), m * l i
                          theorem Language.iSup_add {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
                          (⨆ (i : ι), l i) + m = ⨆ (i : ι), l i + m
                          theorem Language.add_iSup {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
                          m + ⨆ (i : ι), l i = ⨆ (i : ι), m + l i
                          theorem Language.iSup_sub {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
                          (⨆ (i : ι), l i) - m = ⨆ (i : ι), l i - m
                          theorem Language.sub_iSup {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
                          m - ⨆ (i : ι), l i = ⨅ (i : ι), m - l i
                          theorem Language.mem_pow {α : Type u_1} {l : Language α} {x : List α} {n : } :
                          x l ^ n ∃ (S : List (List α)), x = S.flatten S.length = n yS, y l
                          theorem Language.kstar_eq_iSup_pow {α : Type u_1} (l : Language α) :
                          KStar.kstar l = ⨆ (i : ), l ^ i
                          @[simp]
                          theorem Language.map_kstar {α : Type u_1} {β : Type u_2} (f : αβ) (l : Language α) :
                          (map f) (KStar.kstar l) = KStar.kstar ((map f) l)
                          @[deprecated add_le_add (since := "2025-10-26")]
                          theorem Language.le_add_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
                          l₁ m₁l₂ m₂l₁ + l₂ m₁ + m₂
                          theorem Language.self_eq_mul_add_iff {α : Type u_1} {l m n : Language α} (hm : []m) :
                          l = m * l + n l = KStar.kstar m * n

                          Arden's lemma

                          def Language.reverse {α : Type u_1} (l : Language α) :

                          Language l.reverse is defined as the set of words from l backwards.

                          Equations
                            Instances For
                              @[simp]
                              theorem Language.mem_reverse {α : Type u_1} {l : Language α} {a : List α} :
                              @[simp]
                              theorem Language.reverse_zero {α : Type u_1} :
                              @[simp]
                              theorem Language.reverse_one {α : Type u_1} :
                              @[simp]
                              theorem Language.reverse_reverse {α : Type u_1} (l : Language α) :
                              @[simp]
                              theorem Language.reverse_add {α : Type u_1} (l m : Language α) :
                              @[simp]
                              theorem Language.reverse_mul {α : Type u_1} (l m : Language α) :
                              @[simp]
                              theorem Language.reverse_iSup {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
                              (⨆ (i : ι), l i).reverse = ⨆ (i : ι), (l i).reverse
                              @[simp]
                              theorem Language.reverse_iInf {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
                              (⨅ (i : ι), l i).reverse = ⨅ (i : ι), (l i).reverse

                              Language.reverse as a ring isomorphism to the opposite ring.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Language.reverse_pow {α : Type u_1} (l : Language α) (n : ) :
                                  (l ^ n).reverse = l.reverse ^ n
                                  @[simp]
                                  theorem Language.mem_inf {α : Type u_1} {x : List α} {l m : Language α} :
                                  x lm x l x m
                                  inductive Symbol (T : Type u_4) (N : Type u_5) :
                                  Type (max u_4 u_5)

                                  Symbols for use by all kinds of grammars.

                                  • terminal {T : Type u_4} {N : Type u_5} (t : T) : Symbol T N

                                    Terminal symbols (of the same type as the language)

                                  • nonterminal {T : Type u_4} {N : Type u_5} (n : N) : Symbol T N

                                    Nonterminal symbols (must not be present when the word being generated is finalized)

                                  Instances For
                                    instance instDecidableEqSymbol {T✝ : Type u_4} {N✝ : Type u_5} [DecidableEq T✝] [DecidableEq N✝] :
                                    DecidableEq (Symbol T✝ N✝)
                                    Equations
                                      def instDecidableEqSymbol.decEq {T✝ : Type u_4} {N✝ : Type u_5} [DecidableEq T✝] [DecidableEq N✝] (x✝ x✝¹ : Symbol T✝ N✝) :
                                      Decidable (x✝ = x✝¹)
                                      Equations
                                        Instances For
                                          def instReprSymbol.repr {T✝ : Type u_4} {N✝ : Type u_5} [Repr T✝] [Repr N✝] :
                                          Symbol T✝ N✝Std.Format
                                          Equations
                                            Instances For
                                              instance instReprSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Repr T✝] [Repr N✝] :
                                              Repr (Symbol T✝ N✝)
                                              Equations
                                                instance instFintypeSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Fintype T✝] [Fintype N✝] :
                                                Fintype (Symbol T✝ N✝)
                                                Equations