Equivalence of light condensed objects with sheaves on a small site #
@[reducible, inline]
The equivalence of categories from light condensed objects to sheaves on a small site equivalent to light profinite sets.
Equations
Instances For
instance
LightCondensed.instSmallHom
{C : Type w}
[CategoryTheory.Category.{v, w} C]
(X Y : LightCondensed C)
:
noncomputable def
LightCondensed.equivSmallSheafificationIso
{C : Type w}
[CategoryTheory.Category.{v, w} C]
[CategoryTheory.HasWeakSheafify (CategoryTheory.coherentTopology LightProfinite) C]
[CategoryTheory.HasWeakSheafify
((CategoryTheory.equivSmallModel LightProfinite).inverse.inducedTopology
(CategoryTheory.coherentTopology LightProfinite))
C]
:
(CategoryTheory.equivSmallModel LightProfinite).op.congrLeft.inverse.comp
((CategoryTheory.presheafToSheaf (CategoryTheory.coherentTopology LightProfinite) C).comp (equivSmall C).functor) ≅ CategoryTheory.presheafToSheaf
((CategoryTheory.equivSmallModel LightProfinite).inverse.inducedTopology
(CategoryTheory.coherentTopology LightProfinite))
C
Sheafifying is preserved under conjugating with the equivalence between light condensed objects and sheaves on a small site.
Equations
Instances For
Taking the free condensed module is preserved under conjugating with the equivalence between light condensed objects and sheaves on a small site.