Documentation

Mathlib.Data.Finset.Empty

Empty and nonempty finite sets #

This file defines the empty finite set āˆ… and a predicate for nonempty Finsets.

Main declarations #

Tags #

finite sets, finset

Nonempty #

def Finset.Nonempty {α : Type u_1} (s : Finset α) :

The property s.Nonempty expresses the fact that the finset s is not empty. It should be used in theorem assumptions instead of ∃ x, x ∈ s or s ≠ āˆ… as it gives access to a nice API thanks to the dot notation.

Equations
    Instances For
      theorem Finset.nonempty_def {α : Type u_1} {s : Finset α} :
      s.Nonempty ↔ ∃ (x : α), x ∈ s
      instance Finset.decidableNonempty {α : Type u_1} {s : Finset α} :
      Equations
        @[simp]
        theorem Finset.coe_nonempty {α : Type u_1} {s : Finset α} :
        theorem Finset.Nonempty.to_set {α : Type u_1} {s : Finset α} :
        s.Nonempty → (↑s).Nonempty

        Alias of the reverse direction of Finset.coe_nonempty.

        theorem Finset.Nonempty.coe_sort {α : Type u_1} {s : Finset α} :
        s.Nonempty → Nonempty ↄs

        Alias of the reverse direction of Finset.nonempty_coe_sort.

        theorem Finset.Nonempty.exists_mem {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
        ∃ (x : α), x ∈ s
        theorem Finset.Nonempty.mono {α : Type u_1} {s t : Finset α} (hst : s āŠ† t) (hs : s.Nonempty) :
        theorem Finset.Nonempty.forall_const {α : Type u_1} {s : Finset α} (h : s.Nonempty) {p : Prop} :
        (āˆ€ x ∈ s, p) ↔ p
        theorem Finset.Nonempty.to_subtype {α : Type u_1} {s : Finset α} :
        s.Nonempty → Nonempty ↄs
        theorem Finset.Nonempty.to_type {α : Type u_1} {s : Finset α} :
        s.Nonempty → Nonempty α

        empty #

        def Finset.empty {α : Type u_1} :
        Finset α

        The empty finset

        Equations
          Instances For
            instance Finset.inhabitedFinset {α : Type u_1} :
            Equations
              @[simp]
              theorem Finset.empty_val {α : Type u_1} :
              @[simp]
              theorem Finset.notMem_empty {α : Type u_1} (a : α) :
              a āˆ‰ āˆ…
              @[simp]
              theorem Finset.mk_zero {α : Type u_1} :
              { val := 0, nodup := ⋯ } = āˆ…
              theorem Finset.ne_empty_of_mem {α : Type u_1} {a : α} {s : Finset α} (h : a ∈ s) :
              theorem Finset.Nonempty.ne_empty {α : Type u_1} {s : Finset α} (h : s.Nonempty) :
              @[simp]
              theorem Finset.empty_subset {α : Type u_1} (s : Finset α) :
              theorem Finset.eq_empty_of_forall_notMem {α : Type u_1} {s : Finset α} (H : āˆ€ (x : α), x āˆ‰ s) :
              theorem Finset.eq_empty_iff_forall_notMem {α : Type u_1} {s : Finset α} :
              s = āˆ… ↔ āˆ€ (x : α), x āˆ‰ s
              @[simp]
              theorem Finset.val_eq_zero {α : Type u_1} {s : Finset α} :
              @[simp]
              theorem Finset.subset_empty {α : Type u_1} {s : Finset α} :
              @[simp]
              theorem Finset.not_ssubset_empty {α : Type u_1} (s : Finset α) :
              @[simp]
              theorem Finset.coe_empty {α : Type u_1} :
              @[simp]
              theorem Finset.coe_eq_empty {α : Type u_1} {s : Finset α} :
              ↑s = āˆ… ↔ s = āˆ…
              @[simp]
              theorem Finset.isEmpty_coe_sort {α : Type u_1} {s : Finset α} :
              IsEmpty ↄs ↔ s = āˆ…
              theorem Finset.eq_empty_of_isEmpty {α : Type u_1} [IsEmpty α] (s : Finset α) :

              A Finset for an empty type is empty.

              instance Finset.instOrderBot {α : Type u_1} :
              Equations
                @[simp]
                theorem Finset.empty_ssubset {α : Type u_1} {s : Finset α} :
                theorem Finset.Nonempty.empty_ssubset {α : Type u_1} {s : Finset α} :

                Alias of the reverse direction of Finset.empty_ssubset.

                theorem Finset.exists_mem_empty_iff {α : Type u_1} (p : α → Prop) :
                (∃ x ∈ āˆ…, p x) ↔ False
                theorem Finset.forall_mem_empty_iff {α : Type u_1} (p : α → Prop) :
                (āˆ€ x ∈ āˆ…, p x) ↔ True
                def Mathlib.Meta.proveFinsetNonempty {u : Lean.Level} {α : Q(Type u)} (s : Q(Finset «$α»)) :
                Lean.MetaM (Option Q(Ā«$sĀ».Nonempty))

                Attempt to prove that a finset is nonempty using the finsetNonempty aesop rule-set.

                You can add lemmas to the rule-set by tagging them with either:

                • aesop safe apply (rule_sets := [finsetNonempty]) if they are always a good idea to follow or
                • aesop unsafe apply (rule_sets := [finsetNonempty]) if they risk directing the search to a blind alley.

                TODO: should some of the lemmas be aesop safe simp instead?

                Equations
                  Instances For