Documentation

Mathlib.Data.Finsupp.PointwiseSMul

Scalar multiplication by finitely supported functions. #

Given sets G and P, with a left-cancellative vector-addition of G on P, we define an antidiagonal function that assigns, for any element a in P, finite subset s of G, and subset t in P, the Set of all pairs of an element in s and an element in t that vector-add to a. When R is a ring and V is an R-module, we obtain a convolution-type action of the ring of finitely supported R-valued functions on G on the space of V-valued functions on P.

Definitions #

theorem Finsupp.finite_vaddAntidiagonal {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [VAdd G P] [IsLeftCancelVAdd G P] [Zero R] [Zero V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) :
def Finsupp.vaddAntidiagonal {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [VAdd G P] [IsLeftCancelVAdd G P] [Zero R] [Zero V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) :

The finset of pairs that vector-add to a given element.

Equations
    Instances For
      theorem Finsupp.mem_vaddAntidiagonal_iff {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [VAdd G P] [IsLeftCancelVAdd G P] [Zero R] [Zero V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) (gh : G ร— P) :
      theorem Finsupp.mem_vaddAntidiagonal_of_addGroup {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [AddGroup G] [AddAction G P] [Zero R] [Zero V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) (gh : G ร— P) :
      def Finsupp.instSMulForallOfIsLeftCancelVAddOfSMulWithZero {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [VAdd G P] [IsLeftCancelVAdd G P] [Zero R] [AddCommMonoid V] [SMulWithZero R V] :
      SMul (G โ†’โ‚€ R) (P โ†’ V)

      A convolution-type scalar multiplication of finitely supported functions on formal functions.

      Equations
        Instances For
          theorem Finsupp.smul_eq {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [VAdd G P] [IsLeftCancelVAdd G P] [Zero R] [AddCommMonoid V] [SMulWithZero R V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) :
          (f โ€ข x) p = โˆ‘ G_1 โˆˆ f.vaddAntidiagonal x p, f G_1.1 โ€ข x G_1.2
          theorem Finsupp.smul_apply_addAction {G : Type u_1} {P : Type u_2} {R : Type u_4} {V : Type u_7} [AddGroup G] [AddAction G P] [Zero R] [AddCommMonoid V] [SMulWithZero R V] (f : G โ†’โ‚€ R) (x : P โ†’ V) (p : P) :
          (f โ€ข x) p = โˆ‘ i โˆˆ f.support, f i โ€ข x (-i +แตฅ p)