Documentation

Mathlib.Data.Int.Order.Units

Lemmas about units in ℤ, which interact with the order structure. #

theorem Int.isUnit_sq {a : ℤ} (ha : IsUnit a) :
a ^ 2 = 1
@[simp]
theorem Int.units_sq (u : ℤˣ) :
u ^ 2 = 1
theorem Int.units_div_eq_mul (u₁ uā‚‚ : ℤˣ) :
u₁ / uā‚‚ = u₁ * uā‚‚
@[simp]
theorem Int.units_coe_mul_self (u : ℤˣ) :
↑u * ↑u = 1
theorem Int.sq_eq_one_of_sq_lt_four {x : ℤ} (h1 : x ^ 2 < 4) (h2 : x ≠ 0) :
x ^ 2 = 1
theorem Int.sq_eq_one_of_sq_le_three {x : ℤ} (h1 : x ^ 2 ≤ 3) (h2 : x ≠ 0) :
x ^ 2 = 1