Documentation
Mathlib
.
Data
.
Int
.
Order
.
Units
Search
return to top
source
Imports
Init
Mathlib.Algebra.Order.Ring.Abs
Imported by
Int
.
isUnit_iff_abs_eq
Int
.
isUnit_sq
Int
.
units_sq
Int
.
units_pow_two
Int
.
units_mul_self
Int
.
units_inv_eq_self
Int
.
units_div_eq_mul
Int
.
units_coe_mul_self
Int
.
neg_one_pow_ne_zero
Int
.
sq_eq_one_of_sq_lt_four
Int
.
sq_eq_one_of_sq_le_three
Int
.
units_pow_eq_pow_mod_two
Lemmas about units in
ā¤
, which interact with the order structure.
#
source
š coverage
theorem
Int
.
isUnit_iff_abs_eq
{
x
:
ā¤
}
:
IsUnit
x
ā
|
x
|
=
1
source
š coverage
theorem
Int
.
isUnit_sq
{
a
:
ā¤
}
(
ha
:
IsUnit
a
)
:
a
^
2
=
1
source
š coverage
@[simp]
theorem
Int
.
units_sq
(
u
:
ā¤
Ė£
)
:
u
^
2
=
1
source
š coverage
theorem
Int
.
units_pow_two
(
u
:
ā¤
Ė£
)
:
u
^
2
=
1
Alias
of
Int.units_sq
.
source
š coverage
@[simp]
theorem
Int
.
units_mul_self
(
u
:
ā¤
Ė£
)
:
u
*
u
=
1
source
š coverage
@[simp]
theorem
Int
.
units_inv_eq_self
(
u
:
ā¤
Ė£
)
:
u
ā»Ā¹
=
u
source
š coverage
theorem
Int
.
units_div_eq_mul
(
uā
uā
:
ā¤
Ė£
)
:
uā
/
uā
=
uā
*
uā
source
š coverage
@[simp]
theorem
Int
.
units_coe_mul_self
(
u
:
ā¤
Ė£
)
:
ā
u
*
ā
u
=
1
source
theorem
Int
.
neg_one_pow_ne_zero
{
n
:
ā
}
:
(-
1
)
^
n
ā
0
source
theorem
Int
.
sq_eq_one_of_sq_lt_four
{
x
:
ā¤
}
(
h1
:
x
^
2
<
4
)
(
h2
:
x
ā
0
)
:
x
^
2
=
1
source
theorem
Int
.
sq_eq_one_of_sq_le_three
{
x
:
ā¤
}
(
h1
:
x
^
2
ā¤
3
)
(
h2
:
x
ā
0
)
:
x
^
2
=
1
source
š coverage
theorem
Int
.
units_pow_eq_pow_mod_two
(
u
:
ā¤
Ė£
)
(
n
:
ā
)
:
u
^
n
=
u
^
(
n
%
2
)