Documentation

Mathlib.Data.Matrix.Basis

Matrices with a single non-zero element. #

This file provides Matrix.single. The matrix Matrix.single i j c has c at position (i, j), and zeroes elsewhere.

def Matrix.single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (a : α) :
Matrix m n α

single i j a is the matrix with a in the i-th row, j-th column, and zeroes elsewhere.

Equations
    Instances For
      @[simp]
      theorem Matrix.single_apply_same {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (c : α) :
      single i j c i j = c
      @[simp]
      theorem Matrix.single_apply_of_ne {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (c : α) (i' : m) (j' : n) (h : ¬(i = i' j = j')) :
      single i j c i' j' = 0
      theorem Matrix.single_apply_of_row_ne {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] {i i' : m} (hi : i i') (j j' : n) (a : α) :
      single i j a i' j' = 0
      theorem Matrix.single_apply_of_col_ne {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i i' : m) {j j' : n} (hj : j j') (a : α) :
      single i j a i' j' = 0
      theorem Matrix.single_apply {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (c : α) (i' : m) (j' : n) :
      single i j c i' j' = if i = i' j = j' then c else 0
      theorem Matrix.single_eq_of_single_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (a : α) :
      single i j a = of (Pi.single i (Pi.single j a))

      See also single_eq_updateRow_zero and single_eq_updateCol_zero.

      @[simp]
      theorem Matrix.of_symm_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (a : α) :
      of.symm (single i j a) = Pi.single i (Pi.single j a)
      @[simp]
      theorem Matrix.smul_single {m : Type u_2} {n : Type u_3} {R : Type u_5} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] [SMulZeroClass R α] (r : R) (i : m) (j : n) (a : α) :
      r single i j a = single i j (r a)
      @[simp]
      theorem Matrix.single_zero {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) :
      single i j 0 = 0
      @[simp]
      theorem Matrix.transpose_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (a : α) :
      (single i j a).transpose = single j i a
      @[simp]
      theorem Matrix.map_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] (i : m) (j : n) (a : α) {β : Type u_10} [Zero β] {F : Type u_11} [FunLike F α β] [ZeroHomClass F α β] (f : F) :
      (single i j a).map f = single i j (f a)
      theorem Matrix.single_mem_matrix {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Zero α] {S : Set α} (hS : 0 S) {i : m} {j : n} {a : α} :
      single i j a S.matrix a S
      theorem Matrix.diagonal_single {m : Type u_2} {α : Type u_7} [DecidableEq m] [Zero α] (i : m) (r : α) :
      @[simp]
      theorem Matrix.submatrix_single_equiv {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type u_7} [DecidableEq l] [DecidableEq m] [DecidableEq n] [DecidableEq o] [Zero α] (f : l n) (g : m o) (i : n) (j : o) (r : α) :
      (single i j r).submatrix f g = single (f.symm i) (g.symm j) r
      theorem Matrix.single_add {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddZeroClass α] (i : m) (j : n) (a b : α) :
      single i j (a + b) = single i j a + single i j b
      theorem Matrix.single_mulVec {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [NonUnitalNonAssocSemiring α] [Fintype m] (i : n) (j : m) (c : α) (x : mα) :
      (single i j c).mulVec x = Function.update 0 i (c * x j)
      theorem Matrix.sum_single_eq_diagonal {m : Type u_2} {α : Type u_7} [DecidableEq m] [AddCommMonoid α] [Fintype m] (f : mα) :
      i : m, single i i (f i) = diagonal f
      theorem Matrix.sum_single_one {m : Type u_2} {α : Type u_7} [DecidableEq m] [AddCommMonoid α] [One α] [Fintype m] :
      i : m, single i i 1 = 1
      theorem Matrix.sum_single_natCast {m : Type u_2} {α : Type u_7} [DecidableEq m] [AddCommMonoidWithOne α] [Fintype m] (n : ) :
      i : m, single i i n = n
      theorem Matrix.sum_single_ofNat {m : Type u_2} {α : Type u_7} [DecidableEq m] [AddCommMonoidWithOne α] [Fintype m] (n : ) [n.AtLeastTwo] :
      i : m, single i i (OfNat.ofNat n) = OfNat.ofNat n
      theorem Matrix.sum_single_intCast {m : Type u_2} {α : Type u_7} [DecidableEq m] [AddCommGroupWithOne α] [Fintype m] (z : ) :
      i : m, single i i z = z
      theorem Matrix.sum_sum_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] [Fintype m] [Fintype n] (x : mnα) :
      i : m, j : n, single i j (x i j) = of x
      theorem Matrix.matrix_eq_sum_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] [Fintype m] [Fintype n] (x : Matrix m n α) :
      x = i : m, j : n, single i j (x i j)
      theorem Matrix.single_eq_single_vecMulVec_single {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [MulZeroOneClass α] (i : m) (j : n) :
      theorem Matrix.induction_on' {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] [Finite m] [Finite n] {P : Matrix m n αProp} (M : Matrix m n α) (h_zero : P 0) (h_add : ∀ (p q : Matrix m n α), P pP qP (p + q)) (h_std_basis : ∀ (i : m) (j : n) (x : α), P (single i j x)) :
      P M
      theorem Matrix.induction_on {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] [Finite m] [Finite n] [Nonempty m] [Nonempty n] {P : Matrix m n αProp} (M : Matrix m n α) (h_add : ∀ (p q : Matrix m n α), P pP qP (p + q)) (h_std_basis : ∀ (i : m) (j : n) (x : α), P (single i j x)) :
      P M
      def Matrix.singleAddMonoidHom {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] (i : m) (j : n) :
      α →+ Matrix m n α

      Matrix.single as a bundled additive map.

      Equations
        Instances For
          @[simp]
          theorem Matrix.singleAddMonoidHom_apply {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [AddCommMonoid α] (i : m) (j : n) (a : α) :
          def Matrix.singleLinearMap {m : Type u_2} {n : Type u_3} (R : Type u_5) {α : Type u_7} [DecidableEq m] [DecidableEq n] [Semiring R] [AddCommMonoid α] [Module R α] (i : m) (j : n) :
          α →ₗ[R] Matrix m n α

          Matrix.single as a bundled linear map.

          Equations
            Instances For
              @[simp]
              theorem Matrix.singleLinearMap_apply {m : Type u_2} {n : Type u_3} (R : Type u_5) {α : Type u_7} [DecidableEq m] [DecidableEq n] [Semiring R] [AddCommMonoid α] [Module R α] (i : m) (j : n) (a✝ : α) :
              (singleLinearMap R i j) a✝ = single i j a✝
              theorem Matrix.ext_addMonoidHom {m : Type u_2} {n : Type u_3} {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Finite m] [Finite n] [AddCommMonoid α] [AddCommMonoid β] f g : Matrix m n α →+ β (h : ∀ (i : m) (j : n), f.comp (singleAddMonoidHom i j) = g.comp (singleAddMonoidHom i j)) :
              f = g

              Additive maps from finite matrices are equal if they agree on the standard basis.

              See note [partially-applied ext lemmas].

              theorem Matrix.ext_addMonoidHom_iff {m : Type u_2} {n : Type u_3} {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Finite m] [Finite n] [AddCommMonoid α] [AddCommMonoid β] {f g : Matrix m n α →+ β} :
              f = g ∀ (i : m) (j : n), f.comp (singleAddMonoidHom i j) = g.comp (singleAddMonoidHom i j)
              theorem Matrix.ext_linearMap {m : Type u_2} {n : Type u_3} (R : Type u_5) {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Finite m] [Finite n] [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] f g : Matrix m n α →ₗ[R] β (h : ∀ (i : m) (j : n), f ∘ₗ singleLinearMap R i j = g ∘ₗ singleLinearMap R i j) :
              f = g

              Linear maps from finite matrices are equal if they agree on the standard basis.

              See note [partially-applied ext lemmas].

              theorem Matrix.ext_linearMap_iff {m : Type u_2} {n : Type u_3} {R : Type u_5} {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Finite m] [Finite n] [Semiring R] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] {f g : Matrix m n α →ₗ[R] β} :
              f = g ∀ (i : m) (j : n), f ∘ₗ singleLinearMap R i j = g ∘ₗ singleLinearMap R i j
              def Matrix.liftLinear {m : Type u_2} {n : Type u_3} {R : Type u_5} (S : Type u_6) {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Fintype m] [Fintype n] [Semiring R] [Semiring S] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [Module S β] [SMulCommClass R S β] :
              (mnα →ₗ[R] β) ≃ₗ[S] Matrix m n α →ₗ[R] β

              Families of linear maps acting on each element are equivalent to linear maps from a matrix.

              This can be thought of as the matrix version of LinearMap.lsum.

              Equations
                Instances For
                  theorem Matrix.liftLinear_apply {m : Type u_2} {n : Type u_3} {R : Type u_5} (S : Type u_6) {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Fintype m] [Fintype n] [Semiring R] [Semiring S] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [Module S β] [SMulCommClass R S β] (f : mnα →ₗ[R] β) (M : Matrix m n α) :
                  ((liftLinear S) f) M = i : m, j : n, (f i j) (M i j)
                  @[simp]
                  theorem Matrix.liftLinear_single {m : Type u_2} {n : Type u_3} {R : Type u_5} (S : Type u_6) {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Fintype m] [Fintype n] [Semiring R] [Semiring S] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [Module S β] [SMulCommClass R S β] (f : mnα →ₗ[R] β) (i : m) (j : n) (a : α) :
                  ((liftLinear S) f) (single i j a) = (f i j) a
                  @[simp]
                  theorem Matrix.liftLinear_comp_singleLinearMap {m : Type u_2} {n : Type u_3} {R : Type u_5} (S : Type u_6) {α : Type u_7} {β : Type u_8} [DecidableEq m] [DecidableEq n] [Fintype m] [Fintype n] [Semiring R] [Semiring S] [AddCommMonoid α] [AddCommMonoid β] [Module R α] [Module R β] [Module S β] [SMulCommClass R S β] (f : mnα →ₗ[R] β) (i : m) (j : n) :
                  @[simp]
                  theorem Matrix.liftLinear_singleLinearMap {m : Type u_2} {n : Type u_3} {R : Type u_5} (S : Type u_6) {α : Type u_7} [DecidableEq m] [DecidableEq n] [Fintype m] [Fintype n] [Semiring R] [Semiring S] [AddCommMonoid α] [Module R α] [Module S α] [SMulCommClass R S α] :
                  @[simp]
                  theorem Matrix.diag_single_of_ne {n : Type u_3} {α : Type u_7} [DecidableEq n] [Zero α] (i j : n) (c : α) (h : i j) :
                  (single i j c).diag = 0
                  @[simp]
                  theorem Matrix.diag_single_same {n : Type u_3} {α : Type u_7} [DecidableEq n] [Zero α] (i : n) (c : α) :
                  (single i i c).diag = Pi.single i c
                  @[simp]
                  theorem Matrix.single_mul_apply_same {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq l] [DecidableEq m] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : l) (j : m) (b : n) (M : Matrix m n α) :
                  (single i j c * M) i b = c * M j b
                  @[simp]
                  theorem Matrix.mul_single_apply_same {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : m) (j : n) (a : l) (M : Matrix l m α) :
                  (M * single i j c) a j = M a i * c
                  @[simp]
                  theorem Matrix.single_mul_apply_of_ne {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq l] [DecidableEq m] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : l) (j : m) (a : l) (b : n) (h : a i) (M : Matrix m n α) :
                  (single i j c * M) a b = 0
                  @[simp]
                  theorem Matrix.mul_single_apply_of_ne {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq m] [DecidableEq n] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : m) (j : n) (a : l) (b : n) (hbj : b j) (M : Matrix l m α) :
                  (M * single i j c) a b = 0
                  @[simp]
                  theorem Matrix.single_mul_single_same {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq l] [DecidableEq m] [DecidableEq n] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : l) (j : m) (k : n) (d : α) :
                  single i j c * single j k d = single i k (c * d)
                  @[simp]
                  theorem Matrix.single_mul_mul_single {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {α : Type u_7} [DecidableEq l] [DecidableEq m] [DecidableEq n] [DecidableEq o] [Fintype m] [NonUnitalNonAssocSemiring α] [Fintype n] (i : l) (i' : m) (j' : n) (j : o) (a : α) (x : Matrix m n α) (b : α) :
                  single i i' a * x * single j' j b = single i j (a * x i' j' * b)
                  @[simp]
                  theorem Matrix.single_mul_single_of_ne {l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type u_7} [DecidableEq l] [DecidableEq m] [DecidableEq n] [Fintype m] [NonUnitalNonAssocSemiring α] (c : α) (i : l) (j k : m) {l✝ : n} (h : j k) (d : α) :
                  single i j c * single k l✝ d = 0
                  theorem Matrix.row_eq_zero_of_commute_single {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {i j k : n} {M : Matrix n n α} (hM : Commute (single i j 1) M) (hkj : k j) :
                  M j k = 0
                  theorem Matrix.col_eq_zero_of_commute_single {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {i j k : n} {M : Matrix n n α} (hM : Commute (single i j 1) M) (hki : k i) :
                  M k i = 0
                  theorem Matrix.diag_eq_of_commute_single {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {i j : n} {M : Matrix n n α} (hM : Commute (single i j 1) M) :
                  M i i = M j j
                  theorem Matrix.mem_range_scalar_of_commute_single {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {M : Matrix n n α} (hM : Pairwise fun (i j : n) => Commute (single i j 1) M) :

                  M is a scalar matrix if it commutes with every non-diagonal single.

                  theorem Matrix.mem_range_scalar_iff_commute_single {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {M : Matrix n n α} :
                  M Set.range (scalar n) ∀ (i j : n), i jCommute (single i j 1) M
                  theorem Matrix.mem_range_scalar_iff_commute_single' {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] {M : Matrix n n α} :
                  M Set.range (scalar n) ∀ (i j : n), Commute (single i j 1) M

                  M is a scalar matrix if and only if it commutes with every single.

                  theorem Matrix.center_eq_scalar_image {n : Type u_3} {α : Type u_7} [DecidableEq n] [Fintype n] [Semiring α] :
                  Set.center (Matrix n n α) = (scalar n) '' Set.center α

                  The center of Matrix n n α is equal to the image of the center of α under scalar n.

                  @[simp]
                  theorem Matrix.center_eq_range {n : Type u_3} (R : Type u_5) [DecidableEq n] [Fintype n] [CommSemiring R] :

                  For a commutative semiring R, the center of Matrix n n R is the range of scalar n (i.e., the span of {1}).