Documentation

Mathlib.Data.Multiset.Powerset

The powerset of a multiset #

powerset #

def Multiset.powersetAux {α : Type u_1} (l : List α) :
List (Multiset α)

A helper function for the powerset of a multiset. Given a list l, returns a list of sublists of l as multisets.

Equations
    Instances For
      @[simp]
      theorem Multiset.mem_powersetAux {α : Type u_1} {l : List α} {s : Multiset α} :
      def Multiset.powersetAux' {α : Type u_1} (l : List α) :
      List (Multiset α)

      Helper function for the powerset of a multiset. Given a list l, returns a list of sublists of l (using sublists'), as multisets.

      Equations
        Instances For
          @[simp]
          theorem Multiset.powersetAux'_cons {α : Type u_1} (a : α) (l : List α) :
          theorem Multiset.powerset_aux'_perm {α : Type u_1} {l₁ lā‚‚ : List α} (p : l₁.Perm lā‚‚) :
          (powersetAux' l₁).Perm (powersetAux' lā‚‚)
          theorem Multiset.powersetAux_perm {α : Type u_1} {l₁ lā‚‚ : List α} (p : l₁.Perm lā‚‚) :
          (powersetAux l₁).Perm (powersetAux lā‚‚)
          def Multiset.powerset {α : Type u_1} (s : Multiset α) :

          The power set of a multiset.

          Equations
            Instances For
              theorem Multiset.powerset_coe {α : Type u_1} (l : List α) :
              (↑l).powerset = ↑(List.map ofList l.sublists)
              @[simp]
              theorem Multiset.powerset_coe' {α : Type u_1} (l : List α) :
              (↑l).powerset = ↑(List.map ofList l.sublists')
              @[simp]
              theorem Multiset.powerset_cons {α : Type u_1} (a : α) (s : Multiset α) :
              @[simp]
              theorem Multiset.mem_powerset {α : Type u_1} {s t : Multiset α} :
              @[simp]
              theorem Multiset.card_powerset {α : Type u_1} (s : Multiset α) :
              theorem Multiset.revzip_powersetAux {α : Type u_1} {l : List α} ⦃x : Multiset α Ɨ Multiset α⦄ (h : x ∈ (powersetAux l).revzip) :
              x.1 + x.2 = ↑l
              theorem Multiset.revzip_powersetAux' {α : Type u_1} {l : List α} ⦃x : Multiset α Ɨ Multiset α⦄ (h : x ∈ (powersetAux' l).revzip) :
              x.1 + x.2 = ↑l
              theorem Multiset.revzip_powersetAux_lemma {α : Type u_2} [DecidableEq α] (l : List α) {l' : List (Multiset α)} (H : āˆ€ ⦃x : Multiset α Ɨ Multiset α⦄, x ∈ l'.revzip → x.1 + x.2 = ↑l) :
              l'.revzip = List.map (fun (x : Multiset α) => (x, ↑l - x)) l'
              theorem Multiset.revzip_powersetAux_perm {α : Type u_1} {l₁ lā‚‚ : List α} (p : l₁.Perm lā‚‚) :

              powersetCard #

              def Multiset.powersetCardAux {α : Type u_1} (n : ā„•) (l : List α) :
              List (Multiset α)

              Helper function for powersetCard. Given a list l, powersetCardAux n l is the list of sublists of length n, as multisets.

              Equations
                Instances For
                  @[simp]
                  theorem Multiset.mem_powersetCardAux {α : Type u_1} {n : ā„•} {l : List α} {s : Multiset α} :
                  @[simp]
                  theorem Multiset.powersetCardAux_zero {α : Type u_1} (l : List α) :
                  @[simp]
                  theorem Multiset.powersetCardAux_cons {α : Type u_1} (n : ā„•) (a : α) (l : List α) :
                  theorem Multiset.powersetCardAux_perm {α : Type u_1} {n : ā„•} {l₁ lā‚‚ : List α} (p : l₁.Perm lā‚‚) :
                  (powersetCardAux n l₁).Perm (powersetCardAux n lā‚‚)
                  def Multiset.powersetCard {α : Type u_1} (n : ā„•) (s : Multiset α) :

                  powersetCard n s is the multiset of all submultisets of s of length n.

                  Equations
                    Instances For
                      theorem Multiset.powersetCard_coe' {α : Type u_1} (n : ā„•) (l : List α) :
                      powersetCard n ↑l = ↑(powersetCardAux n l)
                      theorem Multiset.powersetCard_coe {α : Type u_1} (n : ā„•) (l : List α) :
                      @[simp]
                      theorem Multiset.powersetCard_cons {α : Type u_1} (n : ā„•) (a : α) (s : Multiset α) :
                      powersetCard (n + 1) (a ::ā‚˜ s) = powersetCard (n + 1) s + map (cons a) (powersetCard n s)
                      @[simp]
                      theorem Multiset.mem_powersetCard {α : Type u_1} {n : ā„•} {s t : Multiset α} :
                      @[simp]
                      theorem Multiset.card_powersetCard {α : Type u_1} (n : ā„•) (s : Multiset α) :
                      @[simp]
                      theorem Multiset.powersetCard_eq_empty {α : Type u_2} (n : ā„•) {s : Multiset α} (h : s.card < n) :
                      theorem Multiset.powersetCard_card_add {α : Type u_1} (s : Multiset α) {i : ā„•} (hi : 0 < i) :
                      powersetCard (s.card + i) s = 0
                      theorem Multiset.powersetCard_map {α : Type u_1} {β : Type u_2} (f : α → β) (n : ā„•) (s : Multiset α) :
                      powersetCard n (map f s) = map (map f) (powersetCard n s)
                      theorem Multiset.bind_powerset_len {α : Type u_2} (S : Multiset α) :
                      ((range (S.card + 1)).bind fun (k : ā„•) => powersetCard k S) = S.powerset
                      theorem Multiset.Nodup.powerset {α : Type u_1} {s : Multiset α} :
                      s.Nodup → s.powerset.Nodup

                      Alias of the reverse direction of Multiset.nodup_powerset.

                      theorem Multiset.Nodup.ofPowerset {α : Type u_1} {s : Multiset α} :
                      s.powerset.Nodup → s.Nodup

                      Alias of the forward direction of Multiset.nodup_powerset.

                      theorem Multiset.Nodup.powersetCard {α : Type u_1} {n : ā„•} {s : Multiset α} (h : s.Nodup) :