Documentation

Mathlib.Data.Set.Semiring

Sets as a semiring under union #

This file defines SetSemiring α, an alias of Set α, which we endow with as addition and pointwise * as multiplication. If α is a (commutative) monoid, SetSemiring α is a (commutative) semiring.

def SetSemiring (α : Type u_3) :
Type u_3

An alias for Set α, which has a semiring structure given by as "addition" and pointwise multiplication * as "multiplication".

Equations
    Instances For
      def Set.up {α : Type u_1} :

      The identity function Set α → SetSemiring α.

      Equations
        Instances For
          def SetSemiring.down {α : Type u_1} :

          The identity function SetSemiring α → Set α.

          Equations
            Instances For
              @[simp]
              theorem SetSemiring.down_up {α : Type u_1} (s : Set α) :
              theorem SetSemiring.up_le_up {α : Type u_1} {s t : Set α} :
              theorem SetSemiring.up_lt_up {α : Type u_1} {s t : Set α} :
              instance SetSemiring.instZero {α : Type u_1} :
              Equations
                instance SetSemiring.instAdd {α : Type u_1} :
                Equations
                  @[simp]
                  theorem Set.up_empty {α : Type u_1} :
                  @[simp]
                  theorem Set.up_union {α : Type u_1} (s t : Set α) :
                  @[simp]
                  theorem Set.up_mul {α : Type u_1} [Mul α] (s t : Set α) :
                  Set.up (s * t) = Set.up s * Set.up t
                  instance SetSemiring.instOne {α : Type u_1} [One α] :
                  Equations
                    theorem SetSemiring.one_def {α : Type u_1} [One α] :
                    1 = Set.up 1
                    @[simp]
                    theorem SetSemiring.down_one {α : Type u_1} [One α] :
                    @[simp]
                    theorem Set.up_one {α : Type u_1} [One α] :
                    Set.up 1 = 1
                    noncomputable instance SetSemiring.instIdemSemiringOfMonoid {α : Type u_1} [Monoid α] :
                    Equations
                      noncomputable instance SetSemiring.instCommMonoid {α : Type u_1} [CommMonoid α] :
                      Equations

                        If α is a monoid, the map that sends a : α to the singleton set {a} is a monoid homomorphism.

                        Equations
                          Instances For
                            noncomputable def SetSemiring.imageHom {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) :

                            The image of a set under a multiplicative homomorphism is a ring homomorphism with respect to the pointwise operations on sets.

                            Equations
                              Instances For
                                theorem SetSemiring.imageHom_def {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) (s : SetSemiring α) :
                                @[simp]
                                theorem SetSemiring.down_imageHom {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) (s : SetSemiring α) :
                                @[simp]
                                theorem Set.up_image {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) (s : Set α) :