Streams a.k.a. infinite lists a.k.a. infinite sequences #
Equations
@[simp]
Alias for Stream'.eta to match List API.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Stream'.cons_injective_left
{α : Type u}
(s : Stream' α)
:
Function.Injective fun (x : α) => cons x s
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Streams sā and sā are defined to be bisimulations if
their heads are equal and tails are bisimulations.
Equations
Instances For
theorem
Stream'.eq_of_bisim
{α : Type u}
(R : Stream' α ā Stream' α ā Prop)
(bisim : IsBisimulation R)
{sā sā : Stream' α}
:
R sā sā ā sā = sā
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]