Documentation

Mathlib.Geometry.Euclidean.Sphere.Tangent

Tangency for spheres. #

This file defines notions of spheres being tangent to affine subspaces and other spheres.

Main definitions #

The affine subspace as is tangent to the sphere s at the point p.

Instances For
    theorem EuclideanGeometry.Sphere.IsTangentAt.eq_of_mem_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p q : P} {as : AffineSubspace ℝ P} (h : s.IsTangentAt p as) (hs : q ∈ s) (has : q ∈ as) :
    q = p
    theorem EuclideanGeometry.Sphere.IsTangentAt.dist_eq_of_mem_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p₁ pβ‚‚ q : P} {as₁ asβ‚‚ : AffineSubspace ℝ P} (h₁ : s.IsTangentAt p₁ as₁) (hβ‚‚ : s.IsTangentAt pβ‚‚ asβ‚‚) (hq_mem₁ : q ∈ as₁) (hq_memβ‚‚ : q ∈ asβ‚‚) :
    dist q p₁ = dist q pβ‚‚

    If two tangent lines to a sphere pass through the same point q, then the distances from q to the tangent points are equal.

    The affine subspace as is tangent to the sphere s at some point.

    Equations
      Instances For

        The set of all maximal tangent spaces to the sphere s.

        Equations
          Instances For

            The set of all maximal tangent spaces to the sphere s containing the point p.

            Equations
              Instances For

                The set of all maximal common tangent spaces to the spheres s₁ and sβ‚‚.

                Equations
                  Instances For

                    The set of all maximal common internal tangent spaces to the spheres s₁ and sβ‚‚: tangent spaces containing a point weakly between the centers of the spheres.

                    Equations
                      Instances For

                        The set of all maximal common external tangent spaces to the spheres s₁ and sβ‚‚: tangent spaces not containing a point strictly between the centers of the spheres. (In the degenerate case where the two spheres are the same sphere with radius 0, the space is considered both an internal and an external common tangent.)

                        Equations
                          Instances For
                            theorem EuclideanGeometry.Sphere.mem_commonIntTangents_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {as : AffineSubspace ℝ P} {s₁ sβ‚‚ : Sphere P} :
                            as ∈ s₁.commonIntTangents sβ‚‚ ↔ as ∈ s₁.commonTangents sβ‚‚ ∧ βˆƒ p ∈ as, Wbtw ℝ s₁.center p sβ‚‚.center
                            theorem EuclideanGeometry.Sphere.mem_commonExtTangents_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {as : AffineSubspace ℝ P} {s₁ sβ‚‚ : Sphere P} :
                            as ∈ s₁.commonExtTangents sβ‚‚ ↔ as ∈ s₁.commonTangents sβ‚‚ ∧ βˆ€ p ∈ as, Β¬Sbtw ℝ s₁.center p sβ‚‚.center
                            structure EuclideanGeometry.Sphere.IsExtTangentAt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] (s₁ sβ‚‚ : Sphere P) (p : P) :

                            The spheres s₁ and sβ‚‚ are externally tangent at the point p.

                            Instances For
                              theorem EuclideanGeometry.Sphere.IsExtTangentAt.symm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} {p : P} (h : s₁.IsExtTangentAt sβ‚‚ p) :
                              sβ‚‚.IsExtTangentAt s₁ p
                              theorem EuclideanGeometry.Sphere.isExtTangentAt_comm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} {p : P} :
                              s₁.IsExtTangentAt sβ‚‚ p ↔ sβ‚‚.IsExtTangentAt s₁ p
                              theorem EuclideanGeometry.Sphere.isExtTangentAt_center_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} :
                              s₁.IsExtTangentAt sβ‚‚ s₁.center ↔ s₁.radius = 0 ∧ s₁.center ∈ sβ‚‚
                              structure EuclideanGeometry.Sphere.IsIntTangentAt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] (s₁ sβ‚‚ : Sphere P) (p : P) :

                              The sphere s₁ is internally tangent to the sphere sβ‚‚ at the point p (that is, s₁ lies inside sβ‚‚ and is tangent to it at that point). This includes the degenerate case where the spheres are the same.

                              Instances For
                                theorem EuclideanGeometry.Sphere.isIntTangentAt_center_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} :
                                s₁.IsIntTangentAt sβ‚‚ s₁.center ↔ s₁.radius = 0 ∧ s₁.center ∈ sβ‚‚

                                The spheres s₁ and sβ‚‚ are externally tangent at some point.

                                Equations
                                  Instances For
                                    theorem EuclideanGeometry.Sphere.IsExtTangent.symm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} (h : s₁.IsExtTangent sβ‚‚) :
                                    sβ‚‚.IsExtTangent s₁

                                    The sphere s₁ is internally tangent to the sphere sβ‚‚ at some point.

                                    Equations
                                      Instances For
                                        theorem EuclideanGeometry.Sphere.IsExtTangentAt.isExtTangent {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} {p : P} (h : s₁.IsExtTangentAt sβ‚‚ p) :
                                        s₁.IsExtTangent sβ‚‚
                                        theorem EuclideanGeometry.Sphere.IsIntTangentAt.isIntTangent {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} {p : P} (h : s₁.IsIntTangentAt sβ‚‚ p) :
                                        s₁.IsIntTangent sβ‚‚
                                        theorem EuclideanGeometry.Sphere.IsExtTangent.dist_center {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} (h : s₁.IsExtTangent sβ‚‚) :
                                        dist s₁.center sβ‚‚.center = s₁.radius + sβ‚‚.radius
                                        theorem EuclideanGeometry.Sphere.IsIntTangent.dist_center {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} (h : s₁.IsIntTangent sβ‚‚) :
                                        dist s₁.center sβ‚‚.center = sβ‚‚.radius - s₁.radius
                                        theorem EuclideanGeometry.Sphere.isExtTangent_iff_dist_center {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] [NormedAddTorsor V P] {s₁ sβ‚‚ : Sphere P} :
                                        s₁.IsExtTangent sβ‚‚ ↔ dist s₁.center sβ‚‚.center = s₁.radius + sβ‚‚.radius ∧ 0 ≀ s₁.radius ∧ 0 ≀ sβ‚‚.radius