Documentation

Mathlib.Geometry.Manifold.IntegralCurve.Basic

Integral curves of vector fields on a manifold #

Let M be a manifold and v : (x : M) → TangentSpace I x be a vector field on M. An integral curve of v is a function γ : ℝ → M such that the derivative of γ at t equals v (γ t). The integral curve may only be defined for all t within some subset of .

This is the first of a series of files, organised as follows:

Main definitions #

Let v : M → TM be a vector field on M, and let γ : ℝ → M.

For IsMIntegralCurveOn γ v s and IsMIntegralCurveAt γ v t₀, even though γ is defined for all time, its value outside of the set s or a small interval around t₀ is irrelevant and considered junk.

TODO #

Reference #

Tags #

integral curve, vector field

def IsMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (s : Set ) :

If γ : ℝ → M is $C^1$ on s : Set and v is a vector field on M, IsMIntegralCurveOn γ v s means γ t is tangent to v (γ t) for all t ∈ s. The value of γ outside of s is irrelevant and considered junk.

Equations
    Instances For
      def IsMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) (t₀ : ) :

      If v is a vector field on M and t₀ : ℝ, IsMIntegralCurveAt γ v t₀ means γ : ℝ → M is a local integral curve of v in a neighbourhood containing t₀. The value of γ outside of this interval is irrelevant and considered junk.

      Equations
        Instances For
          def IsMIntegralCurve {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (γ : M) (v : (x : M) → TangentSpace I x) :

          If v : M → TM is a vector field on M, IsMIntegralCurve γ v means γ : ℝ → M is a global integral curve of v. That is, γ t is tangent to v (γ t) for all t : ℝ.

          Equations
            Instances For
              theorem IsMIntegralCurve.isMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (s : Set ) :
              theorem isMIntegralCurveAt_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
              IsMIntegralCurveAt γ v t₀ snhds t₀, IsMIntegralCurveOn γ v s
              theorem isMIntegralCurveAt_iff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } :
              IsMIntegralCurveAt γ v t₀ ε > 0, IsMIntegralCurveOn γ v (Metric.ball t₀ ε)

              γ is an integral curve for v at t₀ iff γ is an integral curve on some interval containing t₀.

              theorem IsMIntegralCurve.isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (h : IsMIntegralCurve γ v) (t : ) :
              theorem isMIntegralCurve_iff_isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} :
              theorem IsMIntegralCurveOn.mono {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s s' : Set } (h : IsMIntegralCurveOn γ v s) (hs : s' s) :
              theorem IsMIntegralCurveAt.hasMFDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } (h : IsMIntegralCurveAt γ v t₀) :
              theorem IsMIntegralCurveOn.isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } (h : IsMIntegralCurveOn γ v s) (hs : s nhds t₀) :
              theorem IsMIntegralCurveAt.isMIntegralCurveOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (h : ts, IsMIntegralCurveAt γ v t) :

              If γ is an integral curve at each t ∈ s, it is an integral curve on s.

              theorem isMIntegralCurveOn_iff_isMIntegralCurveAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (hs : IsOpen s) :
              IsMIntegralCurveOn γ v s ts, IsMIntegralCurveAt γ v t
              theorem IsMIntegralCurveOn.continuousWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } ( : IsMIntegralCurveOn γ v s) (ht : t₀ s) :
              theorem IsMIntegralCurveOn.continuousOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) :
              theorem IsMIntegralCurveAt.continuousAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) :
              ContinuousAt γ t₀
              theorem IsMIntegralCurve.continuous {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) :
              theorem IsMIntegralCurveOn.hasDerivWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveOn γ v s) {t : } (ht : t s) (hsrc : γ t (extChartAt I (γ t₀)).source) :
              HasDerivWithinAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) s t

              If γ is an integral curve of a vector field v, then γ t is tangent to v (γ t) when expressed in the local chart around the initial point γ t₀.

              theorem IsMIntegralCurveAt.eventually_hasDerivAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } [IsManifold I 1 M] ( : IsMIntegralCurveAt γ v t₀) :
              ∀ᶠ (t : ) in nhds t₀, HasDerivAt ((extChartAt I (γ t₀)) γ) ((tangentCoordChange I (γ t) (γ t₀) (γ t)) (v (γ t))) t