Fixed-point-free automorphisms #
This file defines fixed-point-free automorphisms and proves some basic properties.
An automorphism ฯ of a group G is fixed-point-free if 1 : G is the only fixed point of ฯ.
A function ฯ : G โ G is fixed-point-free if 1 : G is the only fixed point of ฯ.
Equations
Instances For
The commutator map g โฆ g / ฯ g. If ฯ g = h * g * hโปยน, then g / ฯ g is exactly the
commutator [g, h] = g * h * gโปยน * hโปยน.
Equations
Instances For
@[simp]
theorem
MonoidHom.FixedPointFree.commutatorMap_injective
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
(hฯ : FixedPointFree โฯ)
:
Function.Injective (commutatorMap โฯ)
theorem
MonoidHom.FixedPointFree.commutatorMap_surjective
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
:
Function.Surjective (commutatorMap โฯ)
theorem
MonoidHom.FixedPointFree.prod_pow_eq_one
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
{n : โ}
(hn : (โฯ)^[n] = _root_.id)
(g : G)
:
theorem
MonoidHom.FixedPointFree.coe_eq_inv_of_sq_eq_one
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : (โฯ)^[2] = _root_.id)
:
theorem
MonoidHom.FixedPointFree.coe_eq_inv_of_involutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
:
theorem
MonoidHom.FixedPointFree.commute_all_of_involutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
(g h : G)
:
Commute g h
def
MonoidHom.FixedPointFree.commGroupOfInvolutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
:
If a finite group admits a fixed-point-free involution, then it is commutative.
Equations
Instances For
theorem
MonoidHom.FixedPointFree.orderOf_ne_two_of_involutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
(g : G)
:
theorem
MonoidHom.FixedPointFree.odd_card_of_involutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
:
theorem
MonoidHom.FixedPointFree.odd_orderOf_of_involutive
{F : Type u_1}
{G : Type u_2}
[Group G]
[FunLike F G G]
[MonoidHomClass F G G]
{ฯ : F}
[Finite G]
(hฯ : FixedPointFree โฯ)
(h2 : Function.Involutive โฯ)
(g : G)
: