MulAction and MulDistribMulAction of quotient group on fixed points #
Given a MulAction/MulDistribMulAction of a group G on A and a normal subgroup H of G,
there is a MulAction/MulDistribMulAction of the quotient group G ⧸ H on fixedPoints H A.
instance
MulAction.instQuotientSubgroupElemFixedPointsSubtypeMem
{G : Type u_1}
[Group G]
{A : Type u_2}
[MulAction G A]
{H : Subgroup G}
[H.Normal]
:
MulAction (G ⧸ H) ↑(fixedPoints (↥H) A)
Equations
@[simp]
@[simp]
theorem
MulAction.quotient_out_smul_fixedPoints
{G : Type u_1}
[Group G]
{A : Type u_2}
[MulAction G A]
{H : Subgroup G}
[H.Normal]
(g : G ⧸ H)
(a : ↑(fixedPoints (↥H) A))
:
instance
MulDistribMulAction.instQuotientSubgroupSubtypeMemSubmonoidSubmonoid
{G : Type u_1}
[Group G]
{A : Type u_2}
[Monoid A]
[MulDistribMulAction G A]
{H : Subgroup G}
[H.Normal]
:
MulDistribMulAction (G ⧸ H) ↥(FixedPoints.submonoid (↥H) A)
Equations
instance
MulDistribMulAction.instQuotientSubgroupSubtypeMemSubgroup
{G : Type u_1}
[Group G]
{H : Subgroup G}
[H.Normal]
{α : Type u_3}
[Group α]
[MulDistribMulAction G α]
:
MulDistribMulAction (G ⧸ H) ↥(FixedPoints.subgroup (↥H) α)