Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.Closure

Closure and finiteness of SubMulAction and SubAddAction #

def SubMulAction.closure (R : Type u_1) {M : Type u_2} [SMul R M] (s : Set M) :

The SubMulAction generated by a set s.

Equations
    Instances For
      def SubAddAction.closure (R : Type u_1) {M : Type u_2} [VAdd R M] (s : Set M) :

      The SubAddAction generated by a set s.

      Equations
        Instances For
          theorem SubMulAction.mem_closure {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {x : M} :
          x closure R s ∀ (p : SubMulAction R M), s px p
          theorem SubAddAction.mem_closure {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {x : M} :
          x closure R s ∀ (p : SubAddAction R M), s px p
          theorem SubMulAction.subset_closure {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} :
          s (closure R s)
          theorem SubAddAction.subset_closure {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} :
          s (closure R s)
          theorem SubMulAction.mem_closure_of_mem {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {x : M} (hx : x s) :
          x closure R s
          theorem SubAddAction.mem_closure_of_mem {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {x : M} (hx : x s) :
          x closure R s
          theorem SubMulAction.closure_le {R : Type u_1} {M : Type u_2} [SMul R M] {s : Set M} {p : SubMulAction R M} :
          closure R s p s p
          theorem SubAddAction.closure_le {R : Type u_1} {M : Type u_2} [VAdd R M] {s : Set M} {p : SubAddAction R M} :
          closure R s p s p
          theorem SubMulAction.closure_mono {R : Type u_1} {M : Type u_2} [SMul R M] {s t : Set M} (h : s t) :
          theorem SubAddAction.closure_mono {R : Type u_1} {M : Type u_2} [VAdd R M] {s t : Set M} (h : s t) :
          def SubMulAction.FG {R : Type u_1} {M : Type u_2} [SMul R M] (p : SubMulAction R M) :

          A SubMulAction is finitely generated if it is the closure of a finite set.

          Equations
            Instances For
              def SubAddAction.FG {R : Type u_1} {M : Type u_2} [VAdd R M] (p : SubAddAction R M) :

              A SubAddAction is finitely generated if it is the closure of a finite set.

              Equations
                Instances For
                  theorem SubMulAction.fg_iff {R : Type u_1} {M : Type u_2} [SMul R M] {p : SubMulAction R M} :
                  p.FG ∃ (s : Finset M), p = closure R s
                  theorem SubAddAction.fg_iff {R : Type u_1} {M : Type u_2} [VAdd R M] {p : SubAddAction R M} :
                  p.FG ∃ (s : Finset M), p = closure R s