Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.OfStabilizer

The SubMulAction of the stabilizer of a point on the complement of that point #

When a group G acts on a type α, the stabilizer of a point a : α acts naturally on the complement of that point.

Such actions (as the similar one, SubMulAction.ofFixingSubgroup, for the fixing subgroup of a set acting on the complement of that set) are useful to study the multiple transitivity of the group G, since n-transitivity of G on α is equivalent to n - 1-transitivity of MulAction.stabilizer G a on the complement of a.

We define equivariant maps that relate various of these SubMulActions and permit to manipulate them in a relatively smooth way.

Consider a b : α and g : G such that hg : g • b = a.

def SubMulAction.ofStabilizer (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) :

Action of the stabilizer of a point on the complement.

Equations
    Instances For
      def SubAddAction.ofStabilizer (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) :

      Action of the stabilizer of a point on the complement.

      Equations
        Instances For
          theorem SubMulAction.ofStabilizer_carrier (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) :
          theorem SubMulAction.mem_ofStabilizer_iff (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) {x : α} :
          theorem SubAddAction.mem_ofStabilizer_iff (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) {x : α} :
          theorem SubMulAction.notMem_val_image (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] {a : α} (t : Set (ofStabilizer G a)) :
          aSubtype.val '' t
          theorem SubAddAction.notMem_val_image (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} (t : Set (ofStabilizer G a)) :
          aSubtype.val '' t
          theorem SubMulAction.neq_of_mem_ofStabilizer (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) {x : (ofStabilizer G a)} :
          x a
          theorem SubAddAction.neq_of_mem_ofStabilizer (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) {x : (ofStabilizer G a)} :
          x a
          @[deprecated SubMulAction.nat_card_ofStabilizer_add_one_eq (since := "2025-10-03")]
          theorem SubMulAction.nat_card_ofStabilizer_eq_add_one (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] [Finite α] (a : α) :

          Alias of SubMulAction.nat_card_ofStabilizer_add_one_eq.

          theorem SubMulAction.nat_card_ofStabilizer_eq (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] [Finite α] (a : α) :
          theorem SubAddAction.nat_card_ofStabilizer_eq (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] [Finite α] (a : α) :
          def SubAddAction.ofStabilizer.conjMap {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) :

          Conjugation induces an equivariant map between the SubAddAction of the stabilizer of a point and that of its translate.

          Equations
            Instances For
              def SubMulAction.ofStabilizer.conjMap {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) :

              Conjugation induces an equivariant map between the SubMulAction of the stabilizer of a point and that of its translate.

              Equations
                Instances For
                  theorem SubMulAction.ofStabilizer.conjMap_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G a)) :
                  ((conjMap hg) x) = g x
                  theorem SubAddAction.ofStabilizer.conjMap_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G a)) :
                  ((conjMap hg) x) = g +ᵥ x
                  theorem AddAction.stabilizerEquivStabilizer_compTriple {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {g h k : G} {a b c : α} {hg : b = g +ᵥ a} {hh : c = h +ᵥ b} {hk : c = k +ᵥ a} (H : k = h + g) :
                  theorem MulAction.stabilizerEquivStabilizer_compTriple {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} {hg : b = g a} {hh : c = h b} {hk : c = k a} (H : k = h * g) :
                  theorem SubMulAction.ofStabilizer.conjMap_comp_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} {hg : b = g a} {hh : c = h b} {hk : c = k a} (H : k = h * g) (x : (ofStabilizer G a)) :
                  (conjMap hh) ((conjMap hg) x) = (conjMap hk) x
                  theorem SubAddAction.ofStabilizer.conjMap_comp_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g h k : G} {a b c : α} {hg : b = g +ᵥ a} {hh : c = h +ᵥ b} {hk : c = k +ᵥ a} (H : k = h + g) (x : (ofStabilizer G a)) :
                  (conjMap hh) ((conjMap hg) x) = (conjMap hk) x
                  theorem SubMulAction.ofStabilizer.conjMap_comp_inv_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G a)) :
                  (conjMap ) ((conjMap hg) x) = x
                  theorem SubAddAction.ofStabilizer.conjMap_comp_neg_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G a)) :
                  (conjMap ) ((conjMap hg) x) = x
                  theorem SubMulAction.ofStabilizer.inv_conjMap_comp_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G b)) :
                  (conjMap hg) ((conjMap ) x) = x
                  theorem SubAddAction.ofStabilizer.neg_conjMap_comp_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G b)) :
                  (conjMap hg) ((conjMap ) x) = x
                  theorem SubMulAction.ofStabilizer.conjMap_comp {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} (hg : b = g a) (hh : c = h b) (hk : c = k a) (H : k = h * g) :
                  theorem SubAddAction.ofStabilizer.conjMap_comp {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g h k : G} {a b c : α} (hg : b = g +ᵥ a) (hh : c = h +ᵥ b) (hk : c = k +ᵥ a) (H : k = h + g) :
                  theorem SubMulAction.ofStabilizer.conjMap_bijective {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) :
                  theorem SubAddAction.ofStabilizer.conjMap_bijective {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) :
                  def SubMulAction.ofStabilizer.snoc {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
                  Fin n.succ α

                  Append a to x : Fin n ↪ ofStabilizer G a to get an element of Fin n.succ ↪ α.

                  Equations
                    Instances For
                      def SubAddAction.ofStabilizer.snoc {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
                      Fin n.succ α

                      Append a to x : Fin n ↪ ofStabilizer G a to get an element of Fin n.succ ↪ α.

                      Equations
                        Instances For
                          theorem SubMulAction.ofStabilizer.snoc_castSucc {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) (i : Fin n) :
                          (snoc x) i.castSucc = (x i)
                          theorem SubAddAction.ofStabilizer.snoc_castSucc {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) (i : Fin n) :
                          (snoc x) i.castSucc = (x i)
                          theorem SubMulAction.ofStabilizer.snoc_last {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
                          (snoc x) (Fin.last n) = a
                          theorem SubAddAction.ofStabilizer.snoc_last {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
                          (snoc x) (Fin.last n) = a
                          theorem SubMulAction.exists_smul_of_last_eq (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] [MulAction.IsPretransitive G α] {n : } (a : α) (x : Fin n.succ α) :
                          ∃ (g : G) (y : Fin n (ofStabilizer G a)), g x = ofStabilizer.snoc y
                          theorem SubAddAction.exists_vadd_of_last_eq (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] [AddAction.IsPretransitive G α] {n : } (a : α) (x : Fin n.succ α) :
                          ∃ (g : G) (y : Fin n (ofStabilizer G a)), g +ᵥ x = ofStabilizer.snoc y
                          instance SMul.ofStabilizer (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (s : Set α) :

                          The stabilizer of a set acts on that set.

                          Equations
                            instance VAdd.ofStabilizer (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (s : Set α) :

                            The stabilizer of a set acts on that set.

                            Equations
                              @[simp]
                              theorem SMul.smul_stabilizer_def (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (s : Set α) (g : (MulAction.stabilizer G s)) (x : s) :
                              ↑(g x) = g x
                              instance instMulActionSubtypeMemSubgroupStabilizerSetElem (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] (s : Set α) :

                              The stabilizer of a set acts on that set

                              Equations
                                instance instAddActionSubtypeMemAddSubgroupStabilizerSetElem (G : Type u_1) [AddGroup G] (α : Type u_2) [AddAction G α] (s : Set α) :

                                The stabilizer of a set acts on that set.

                                Equations
                                  @[simp]
                                  theorem stabilizer_compl (G : Type u_1) [Group G] (α : Type u_2) [MulAction G α] {s : Set α} :

                                  The stabilizer of the complement is the stabilizer of the set.