Deducing finiteness of a group. #
noncomputable def
AddGroup.fintypeOfKerLeRange
{F : Type u_1}
{G : Type u_2}
{H : Type u_3}
[AddGroup F]
[AddGroup G]
[AddGroup H]
[Fintype F]
[Fintype H]
(f : F →+ G)
(g : G →+ H)
(h : g.ker ≤ f.range)
:
Fintype G
If F and H are finite such that ker(G →+ H) ≤ im(F →+ G), then G is finite.
Equations
Instances For
noncomputable def
AddGroup.fintypeOfKerEqRange
{F : Type u_1}
{G : Type u_2}
{H : Type u_3}
[AddGroup F]
[AddGroup G]
[AddGroup H]
[Fintype F]
[Fintype H]
(f : F →+ G)
(g : G →+ H)
(h : g.ker = f.range)
:
Fintype G
If F and H are finite such that ker(G →+ H) = im(F →+ G), then G is finite.
Equations
Instances For
theorem
Finite.of_addSubgroup_quotient
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Finite ↥H]
[Finite (G ⧸ H)]
:
Finite G
@[deprecated Finite.of_subgroup_quotient (since := "2025-11-11")]
theorem
Finite.of_finite_quot_finite_subgroup
{G : Type u_2}
[Group G]
(H : Subgroup G)
[Finite ↥H]
[Finite (G ⧸ H)]
:
Finite G
Alias of Finite.of_subgroup_quotient.
@[deprecated Finite.of_addSubgroup_quotient (since := "2025-11-11")]
theorem
Finite.of_finite_quot_finite_addSubgroup
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Finite ↥H]
[Finite (G ⧸ H)]
:
Finite G
Alias of Finite.of_addSubgroup_quotient.