Centers of subgroups #
The center of a group G is the set of elements that commute with everything in G
Equations
Instances For
The center of an additive group G is the set of elements that commute with
everything in G
Equations
Instances For
@[simp]
@[simp]
@[simp]
theorem
Subgroup.centerCongr_symm_apply_coe
{G : Type u_1}
[Group G]
{H : Type u_2}
[Group H]
(e : G โ* H)
(s : โฅ(Subsemigroup.center H))
:
@[simp]
theorem
AddSubgroup.centerCongr_apply_coe
{G : Type u_1}
[AddGroup G]
{H : Type u_2}
[AddGroup H]
(e : G โ+ H)
(r : โฅ(AddSubsemigroup.center G))
:
@[simp]
theorem
Subgroup.centerCongr_apply_coe
{G : Type u_1}
[Group G]
{H : Type u_2}
[Group H]
(e : G โ* H)
(r : โฅ(Subsemigroup.center G))
:
@[simp]
theorem
AddSubgroup.centerCongr_symm_apply_coe
{G : Type u_1}
[AddGroup G]
{H : Type u_2}
[AddGroup H]
(e : G โ+ H)
(s : โฅ(AddSubsemigroup.center H))
:
The center of a group is isomorphic to the center of its opposite.
Equations
Instances For
The center of an additive group is isomorphic to the center of its opposite.
Equations
Instances For
@[simp]
theorem
Subgroup.centerToMulOpposite_apply_coe
(G : Type u_1)
[Group G]
(r : โฅ(Subsemigroup.center G))
:
@[simp]
theorem
Subgroup.centerToMulOpposite_symm_apply_coe
(G : Type u_1)
[Group G]
(r : โฅ(Subsemigroup.center Gแตแตแต))
:
@[simp]
theorem
AddSubgroup.centerToAddOpposite_apply_coe
(G : Type u_1)
[AddGroup G]
(r : โฅ(AddSubsemigroup.center G))
:
@[simp]
theorem
AddSubgroup.centerToAddOpposite_symm_apply_coe
(G : Type u_1)
[AddGroup G]
(r : โฅ(AddSubsemigroup.center Gแตแตแต))
:
A group is commutative if the center is the whole group
Equations
Instances For
theorem
IsConj.eq_of_left_mem_center
{M : Type u_2}
[Monoid M]
{g h : M}
(H : IsConj g h)
(Hg : g โ Set.center M)
:
theorem
IsConj.eq_of_right_mem_center
{M : Type u_2}
[Monoid M]
{g h : M}
(H : IsConj g h)
(Hh : h โ Set.center M)
:
theorem
ConjClasses.mk_bijOn
(G : Type u_2)
[Group G]
:
Set.BijOn ConjClasses.mk (โ(Subgroup.center G)) (noncenter G)แถ