Documentation

Mathlib.LinearAlgebra.AffineSpace.Pointwise

Pointwise instances on AffineSubspaces #

This file provides the additive action AffineSubspace.pointwiseAddAction in the Pointwise locale.

def AffineSubspace.pointwiseVAdd {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] :

The additive action on an affine subspace corresponding to applying the action to every element.

This is available as an instance in the Pointwise locale.

Equations
    Instances For
      @[simp]
      theorem AffineSubspace.coe_pointwise_vadd {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) (s : AffineSubspace k P) :
      โ†‘(v +แตฅ s) = v +แตฅ โ†‘s
      def AffineSubspace.pointwiseAddAction {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] :

      The additive action on an affine subspace corresponding to applying the action to every element.

      This is available as an instance in the Pointwise locale.

      Equations
        Instances For
          theorem AffineSubspace.pointwise_vadd_eq_map {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) (s : AffineSubspace k P) :
          v +แตฅ s = map (โ†‘(AffineEquiv.constVAdd k P v)) s
          theorem AffineSubspace.vadd_mem_pointwise_vadd_iff {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] {v : V} {s : AffineSubspace k P} {p : P} :
          @[simp]
          theorem AffineSubspace.pointwise_vadd_bot {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) :
          @[simp]
          theorem AffineSubspace.pointwise_vadd_top {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) :
          theorem AffineSubspace.pointwise_vadd_span {k : Type u_2} {V : Type u_3} {P : Type u_4} [Ring k] [AddCommGroup V] [Module k V] [AddTorsor V P] (v : V) (s : Set P) :
          theorem AffineSubspace.map_pointwise_vadd {k : Type u_2} {Vโ‚ : Type u_5} {Pโ‚ : Type u_6} {Vโ‚‚ : Type u_7} {Pโ‚‚ : Type u_8} [Ring k] [AddCommGroup Vโ‚] [Module k Vโ‚] [AddTorsor Vโ‚ Pโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚‚] [AddTorsor Vโ‚‚ Pโ‚‚] (f : Pโ‚ โ†’แตƒ[k] Pโ‚‚) (v : Vโ‚) (s : AffineSubspace k Pโ‚) :
          def AffineSubspace.pointwiseSMul {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [DistribSMul M V] [SMulCommClass M k V] :

          The multiplicative action on an affine subspace corresponding to applying the action to every element.

          This is available as an instance in the Pointwise locale.

          TODO: generalize to include SMul (P โ‰ƒแตƒ[k] P) (AffineSubspace k P), which acts on P with a VAdd version of a DistribMulAction.

          Equations
            Instances For
              @[simp]
              theorem AffineSubspace.coe_smul {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [DistribSMul M V] [SMulCommClass M k V] (a : M) (s : AffineSubspace k V) :
              โ†‘(a โ€ข s) = a โ€ข โ†‘s
              theorem AffineSubspace.smul_eq_map {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [DistribSMul M V] [SMulCommClass M k V] (a : M) (s : AffineSubspace k V) :
              theorem AffineSubspace.smul_mem_smul_iff {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] {s : AffineSubspace k V} {p : V} {G : Type u_9} [Group G] [DistribMulAction G V] [SMulCommClass G k V] {a : G} :
              @[simp]
              theorem AffineSubspace.smul_bot {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [DistribSMul M V] [SMulCommClass M k V] (a : M) :
              theorem AffineSubspace.smul_span {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [DistribSMul M V] [SMulCommClass M k V] (a : M) (s : Set V) :
              def AffineSubspace.mulAction {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [Monoid M] [DistribMulAction M V] [SMulCommClass M k V] :

              The multiplicative action on an affine subspace corresponding to applying the action to every element.

              This is available as an instance in the Pointwise locale.

              TODO: generalize to include SMul (P โ‰ƒแตƒ[k] P) (AffineSubspace k P), which acts on P with a VAdd version of a DistribMulAction.

              Equations
                Instances For
                  theorem AffineSubspace.smul_mem_smul_iff_of_isUnit {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [Monoid M] [DistribMulAction M V] [SMulCommClass M k V] {a : M} {s : AffineSubspace k V} {p : V} (ha : IsUnit a) :
                  theorem AffineSubspace.smul_mem_smul_iffโ‚€ {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] {s : AffineSubspace k V} {p : V} {Gโ‚€ : Type u_9} [GroupWithZero Gโ‚€] [DistribMulAction Gโ‚€ V] [SMulCommClass Gโ‚€ k V] {a : Gโ‚€} (ha : a โ‰  0) :
                  @[simp]
                  theorem AffineSubspace.smul_top {M : Type u_1} {k : Type u_2} {V : Type u_3} [Ring k] [AddCommGroup V] [Module k V] [Monoid M] [DistribMulAction M V] [SMulCommClass M k V] {a : M} (ha : IsUnit a) :
                  @[simp]
                  theorem AffineSubspace.direction_smul {k : Type u_2} {V : Type u_3} [Field k] [AddCommGroup V] [Module k V] {a : k} (ha : a โ‰  0) (s : AffineSubspace k V) :