Documentation

Mathlib.LinearAlgebra.AffineSpace.Restrict

Affine map restrictions #

This file defines restrictions of affine maps.

Main definitions #

Main theorems #

instance AffineSubspace.nonempty_map {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] {E : AffineSubspace k Pโ‚} [Ene : Nonempty โ†ฅE] {ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚} :
Nonempty โ†ฅ(map ฯ† E)
def AffineMap.restrict {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] (ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚) {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} [Nonempty โ†ฅE] [Nonempty โ†ฅF] (hEF : AffineSubspace.map ฯ† E โ‰ค F) :
โ†ฅE โ†’แตƒ[k] โ†ฅF

Restrict domain and codomain of an affine map to the given subspaces.

Equations
    Instances For
      theorem AffineMap.restrict.coe_apply {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] (ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚) {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} [Nonempty โ†ฅE] [Nonempty โ†ฅF] (hEF : AffineSubspace.map ฯ† E โ‰ค F) (x : โ†ฅE) :
      โ†‘((ฯ†.restrict hEF) x) = ฯ† โ†‘x
      theorem AffineMap.restrict.linear_aux {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] {ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚} {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} (hEF : AffineSubspace.map ฯ† E โ‰ค F) :
      theorem AffineMap.restrict.linear {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] (ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚) {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} [Nonempty โ†ฅE] [Nonempty โ†ฅF] (hEF : AffineSubspace.map ฯ† E โ‰ค F) :
      (ฯ†.restrict hEF).linear = ฯ†.linear.restrict โ‹ฏ
      theorem AffineMap.restrict.injective {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] {ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚} (hฯ† : Function.Injective โ‡‘ฯ†) {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} [Nonempty โ†ฅE] [Nonempty โ†ฅF] (hEF : AffineSubspace.map ฯ† E โ‰ค F) :
      Function.Injective โ‡‘(ฯ†.restrict hEF)
      theorem AffineMap.restrict.surjective {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] (ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚) {E : AffineSubspace k Pโ‚} {F : AffineSubspace k Pโ‚‚} [Nonempty โ†ฅE] [Nonempty โ†ฅF] (h : AffineSubspace.map ฯ† E = F) :
      Function.Surjective โ‡‘(ฯ†.restrict โ‹ฏ)
      theorem AffineMap.restrict.bijective {k : Type u_1} {Vโ‚ : Type u_2} {Pโ‚ : Type u_3} {Vโ‚‚ : Type u_4} {Pโ‚‚ : Type u_5} [Ring k] [AddCommGroup Vโ‚] [AddCommGroup Vโ‚‚] [Module k Vโ‚] [Module k Vโ‚‚] [AddTorsor Vโ‚ Pโ‚] [AddTorsor Vโ‚‚ Pโ‚‚] {E : AffineSubspace k Pโ‚} [Nonempty โ†ฅE] {ฯ† : Pโ‚ โ†’แตƒ[k] Pโ‚‚} (hฯ† : Function.Injective โ‡‘ฯ†) :
      Function.Bijective โ‡‘(ฯ†.restrict โ‹ฏ)