Affine map restrictions #
This file defines restrictions of affine maps.
Main definitions #
- The domain and codomain of an affine map can be restricted using
AffineMap.restrict.
Main theorems #
- The associated linear map of the restriction is the restriction of the linear map associated to the original affine map.
- The restriction is injective if the original map is injective.
- The restriction in surjective if the codomain is the image of the domain.
instance
AffineSubspace.nonempty_map
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
{E : AffineSubspace k Pโ}
[Ene : Nonempty โฅE]
{ฯ : Pโ โแต[k] Pโ}
:
def
AffineMap.restrict
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
(ฯ : Pโ โแต[k] Pโ)
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
[Nonempty โฅE]
[Nonempty โฅF]
(hEF : AffineSubspace.map ฯ E โค F)
:
Restrict domain and codomain of an affine map to the given subspaces.
Equations
Instances For
theorem
AffineMap.restrict.coe_apply
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
(ฯ : Pโ โแต[k] Pโ)
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
[Nonempty โฅE]
[Nonempty โฅF]
(hEF : AffineSubspace.map ฯ E โค F)
(x : โฅE)
:
theorem
AffineMap.restrict.linear_aux
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
{ฯ : Pโ โแต[k] Pโ}
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
(hEF : AffineSubspace.map ฯ E โค F)
:
theorem
AffineMap.restrict.linear
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
(ฯ : Pโ โแต[k] Pโ)
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
[Nonempty โฅE]
[Nonempty โฅF]
(hEF : AffineSubspace.map ฯ E โค F)
:
theorem
AffineMap.restrict.injective
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
{ฯ : Pโ โแต[k] Pโ}
(hฯ : Function.Injective โฯ)
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
[Nonempty โฅE]
[Nonempty โฅF]
(hEF : AffineSubspace.map ฯ E โค F)
:
Function.Injective โ(ฯ.restrict hEF)
theorem
AffineMap.restrict.surjective
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
(ฯ : Pโ โแต[k] Pโ)
{E : AffineSubspace k Pโ}
{F : AffineSubspace k Pโ}
[Nonempty โฅE]
[Nonempty โฅF]
(h : AffineSubspace.map ฯ E = F)
:
Function.Surjective โ(ฯ.restrict โฏ)
theorem
AffineMap.restrict.bijective
{k : Type u_1}
{Vโ : Type u_2}
{Pโ : Type u_3}
{Vโ : Type u_4}
{Pโ : Type u_5}
[Ring k]
[AddCommGroup Vโ]
[AddCommGroup Vโ]
[Module k Vโ]
[Module k Vโ]
[AddTorsor Vโ Pโ]
[AddTorsor Vโ Pโ]
{E : AffineSubspace k Pโ}
[Nonempty โฅE]
{ฯ : Pโ โแต[k] Pโ}
(hฯ : Function.Injective โฯ)
:
Function.Bijective โ(ฯ.restrict โฏ)