Documentation

Mathlib.LinearAlgebra.Dimension.DivisionRing

Dimension of vector spaces #

In this file we provide results about Module.rank and Module.finrank of vector spaces over division rings.

Main statements #

For vector spaces (i.e. modules over a field), we have

See also Mathlib/LinearAlgebra/Dimension/ErdosKaplansky.lean for the ErdΕ‘s-Kaplansky theorem.

If a vector space has a finite dimension, the index set of Basis.ofVectorSpace is finite.

theorem rank_quotient_add_rank_of_divisionRing {K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (p : Submodule K V) :
Module.rank K (V β§Έ p) + Module.rank K β†₯p = Module.rank K V

Also see rank_quotient_add_rank.

theorem rank_add_rank_split {K : Type u} {V V₁ Vβ‚‚ V₃ : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [AddCommGroup V₁] [Module K V₁] [AddCommGroup Vβ‚‚] [Module K Vβ‚‚] [AddCommGroup V₃] [Module K V₃] (db : Vβ‚‚ β†’β‚—[K] V) (eb : V₃ β†’β‚—[K] V) (cd : V₁ β†’β‚—[K] Vβ‚‚) (ce : V₁ β†’β‚—[K] V₃) (hde : ⊀ ≀ db.range βŠ” eb.range) (hgd : cd.ker = βŠ₯) (eq : db βˆ˜β‚— cd = eb βˆ˜β‚— ce) (eqβ‚‚ : βˆ€ (d : Vβ‚‚) (e : V₃), db d = eb e β†’ βˆƒ (c : V₁), cd c = d ∧ ce c = e) :
Module.rank K V + Module.rank K V₁ = Module.rank K Vβ‚‚ + Module.rank K V₃

This is mostly an auxiliary lemma for Submodule.rank_sup_add_rank_inf_eq.