Dimension of vector spaces #
In this file we provide results about Module.rank and Module.finrank of vector spaces
over division rings.
Main statements #
For vector spaces (i.e. modules over a field), we have
rank_quotient_add_rank_of_divisionRing: ifVβis a submodule ofV, thenModule.rank (V/Vβ) + Module.rank Vβ = Module.rank V.rank_range_add_rank_ker: the rank-nullity theorem.
See also Mathlib/LinearAlgebra/Dimension/ErdosKaplansky.lean for the ErdΕs-Kaplansky theorem.
theorem
Module.Basis.finite_ofVectorSpaceIndex_of_rank_lt_aleph0
{K : Type u}
{V : Type v}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
(h : Module.rank K V < Cardinal.aleph0)
:
(ofVectorSpaceIndex K V).Finite
If a vector space has a finite dimension, the index set of Basis.ofVectorSpace is finite.
theorem
rank_quotient_add_rank_of_divisionRing
{K : Type u}
{V : Type v}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
(p : Submodule K V)
:
Also see rank_quotient_add_rank.
theorem
rank_add_rank_split
{K : Type u}
{V Vβ Vβ Vβ : Type v}
[DivisionRing K]
[AddCommGroup V]
[Module K V]
[AddCommGroup Vβ]
[Module K Vβ]
[AddCommGroup Vβ]
[Module K Vβ]
[AddCommGroup Vβ]
[Module K Vβ]
(db : Vβ ββ[K] V)
(eb : Vβ ββ[K] V)
(cd : Vβ ββ[K] Vβ)
(ce : Vβ ββ[K] Vβ)
(hde : β€ β€ db.range β eb.range)
(hgd : cd.ker = β₯)
(eq : db ββ cd = eb ββ ce)
(eqβ : β (d : Vβ) (e : Vβ), db d = eb e β β (c : Vβ), cd c = d β§ ce c = e)
:
This is mostly an auxiliary lemma for Submodule.rank_sup_add_rank_inf_eq.