The general linear group of linear maps #
The general linear group is defined to be the group of invertible linear maps from M to itself.
See also Matrix.GeneralLinearGroup
Main definitions #
@[reducible, inline]
abbrev
LinearMap.GeneralLinearGroup
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
Type u_2
The group of invertible linear maps from M to itself
Equations
Instances For
def
LinearMap.GeneralLinearGroup.toLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
An invertible linear map f determines an equivalence from M to itself.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.coe_toLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
theorem
LinearMap.GeneralLinearGroup.toLinearEquiv_mul
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f g : GeneralLinearGroup R M)
:
theorem
LinearMap.GeneralLinearGroup.toLinearEquiv_inv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
def
LinearMap.GeneralLinearGroup.ofLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : M โโ[R] M)
:
An equivalence from M to itself determines an invertible linear map.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.coe_ofLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : M โโ[R] M)
:
theorem
LinearMap.GeneralLinearGroup.ofLinearEquiv_mul
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f g : M โโ[R] M)
:
theorem
LinearMap.GeneralLinearGroup.ofLinearEquiv_inv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : M โโ[R] M)
:
def
LinearMap.GeneralLinearGroup.generalLinearEquiv
(R : Type u_1)
(M : Type u_2)
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
The general linear group on R and M is multiplicatively equivalent to the type of linear
equivalences between M and itself.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.generalLinearEquiv_to_linearMap
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(f : GeneralLinearGroup R M)
:
def
LinearMap.GeneralLinearGroup.congrLinearEquiv
{Rโ : Type u_3}
{Rโ : Type u_4}
{Mโ : Type u_6}
{Mโ : Type u_7}
[Semiring Rโ]
[Semiring Rโ]
[AddCommMonoid Mโ]
[AddCommMonoid Mโ]
[Module Rโ Mโ]
[Module Rโ Mโ]
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
(eโโ : Mโ โโโ[ฯโโ] Mโ)
:
A semilinear equivalence from V to W determines an isomorphism of general linear
groups.
Equations
Instances For
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_apply
{Rโ : Type u_3}
{Rโ : Type u_4}
{Mโ : Type u_6}
{Mโ : Type u_7}
[Semiring Rโ]
[Semiring Rโ]
[AddCommMonoid Mโ]
[AddCommMonoid Mโ]
[Module Rโ Mโ]
[Module Rโ Mโ]
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
(eโโ : Mโ โโโ[ฯโโ] Mโ)
(g : GeneralLinearGroup Rโ Mโ)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_symm
{Rโ : Type u_3}
{Rโ : Type u_4}
{Mโ : Type u_6}
{Mโ : Type u_7}
[Semiring Rโ]
[Semiring Rโ]
[AddCommMonoid Mโ]
[AddCommMonoid Mโ]
[Module Rโ Mโ]
[Module Rโ Mโ]
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
(eโโ : Mโ โโโ[ฯโโ] Mโ)
:
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_trans
{R : Type u_1}
[Semiring R]
{Nโ : Type u_9}
{Nโ : Type u_10}
{Nโ : Type u_11}
[AddCommMonoid Nโ]
[AddCommMonoid Nโ]
[AddCommMonoid Nโ]
[Module R Nโ]
[Module R Nโ]
[Module R Nโ]
(eโโ : Nโ โโ[R] Nโ)
(eโโ : Nโ โโ[R] Nโ)
:
(congrLinearEquiv eโโ).trans (congrLinearEquiv eโโ) = congrLinearEquiv (eโโ โชโซโ eโโ)
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_trans'
{Rโ : Type u_3}
{Rโ : Type u_4}
{Rโ : Type u_5}
{Mโ : Type u_6}
{Mโ : Type u_7}
{Mโ : Type u_8}
[Semiring Rโ]
[Semiring Rโ]
[Semiring Rโ]
[AddCommMonoid Mโ]
[AddCommMonoid Mโ]
[AddCommMonoid Mโ]
[Module Rโ Mโ]
[Module Rโ Mโ]
[Module Rโ Mโ]
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
{ฯโโ : Rโ โ+* Rโ}
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
[RingHomInvPair ฯโโ ฯโโ]
[RingHomCompTriple ฯโโ ฯโโ ฯโโ]
[RingHomCompTriple ฯโโ ฯโโ ฯโโ]
(eโโ : Mโ โโโ[ฯโโ] Mโ)
(eโโ : Mโ โโโ[ฯโโ] Mโ)
:
(congrLinearEquiv eโโ).trans (congrLinearEquiv eโโ) = congrLinearEquiv (eโโ.trans eโโ)
Stronger form of congrLinearEquiv.trans applying to semilinear maps. Not a simp lemma as
ฯโโ and ฯโโ cannot be inferred from the LHS.
@[simp]
theorem
LinearMap.GeneralLinearGroup.congrLinearEquiv_refl
{Rโ : Type u_3}
{Mโ : Type u_6}
[Semiring Rโ]
[AddCommMonoid Mโ]
[Module Rโ Mโ]
: