Documentation

Mathlib.LinearAlgebra.Matrix.Determinant.Misc

Miscellaneous results about determinant #

In this file, we collect various formulas about determinant of matrices.

theorem Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det {R : Type u_1} [CommRing R] {n : ā„•} (M : Matrix (Fin (n + 1)) (Fin n) R) (hv : āˆ‘ j : Fin (n + 1), M j = 0) (j₁ jā‚‚ : Fin (n + 1)) :
(M.submatrix j₁.succAbove id).det = (↑↑j₁ - ↑↑jā‚‚).negOnePow • (M.submatrix jā‚‚.succAbove id).det

Let M be a (n+1) Ɨ n matrix whose row sums to zero. Then all the matrices obtained by deleting one row have the same determinant up to a sign.

theorem Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det' {R : Type u_1} [CommRing R] {n : ā„•} (M : Matrix (Fin n) (Fin (n + 1)) R) (hv : āˆ€ (i : Fin n), āˆ‘ j : Fin (n + 1), M i j = 0) (j₁ jā‚‚ : Fin (n + 1)) :
(M.submatrix id j₁.succAbove).det = (↑↑j₁ - ↑↑jā‚‚).negOnePow • (M.submatrix id jā‚‚.succAbove).det

Let M be a (n+1) Ɨ n matrix whose column sums to zero. Then all the matrices obtained by deleting one column have the same determinant up to a sign.

theorem Matrix.det_eq_sum_column_mul_submatrix_succAbove_succAbove_det {R : Type u_1} [CommRing R] {n : ā„•} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (iā‚€ jā‚€ : Fin (n + 1)) (hv : āˆ€ (j : Fin (n + 1)), j ≠ jā‚€ → āˆ‘ i : Fin (n + 1), M i j = 0) :
M.det = ((-1) ^ (↑iā‚€ + ↑jā‚€) * āˆ‘ i : Fin (n + 1), M i jā‚€) * (M.submatrix iā‚€.succAbove jā‚€.succAbove).det

Let M be a (n+1) Ɨ (n+1) matrix. Assume that all columns, but the jā‚€-column, sums to zero. Then its determinant is, up to sign, the sum of the jā‚€-column times the determinant of the matrix obtained by deleting any row and the jā‚€-column.

theorem Matrix.det_eq_sum_row_mul_submatrix_succAbove_succAbove_det {R : Type u_1} [CommRing R] {n : ā„•} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (iā‚€ jā‚€ : Fin (n + 1)) (hv : āˆ€ (i : Fin (n + 1)), i ≠ iā‚€ → āˆ‘ j : Fin (n + 1), M i j = 0) :
M.det = ((-1) ^ (↑iā‚€ + ↑jā‚€) * āˆ‘ j : Fin (n + 1), M iā‚€ j) * (M.submatrix iā‚€.succAbove jā‚€.succAbove).det

Let M be a (n+1) Ɨ (n+1) matrix. Assume that all rows, but the iā‚€-row, sums to zero. Then its determinant is, up to sign, the sum of the iā‚€-row times the determinant of the matrix obtained by deleting the iā‚€-row and any column.