Documentation

Mathlib.LinearAlgebra.QuadraticForm.Dual

Quadratic form structures related to Module.Dual #

Main definitions #

The symmetric bilinear form on Module.Dual R M ร— M defined as B (f, x) (g, y) = f y + g x.

Equations
    Instances For
      @[simp]
      theorem LinearMap.dualProd_apply_apply (R : Type u_1) (M : Type u_2) [CommSemiring R] [AddCommMonoid M] [Module R M] (a aโœ : Module.Dual R M ร— M) :
      ((dualProd R M) a) aโœ = aโœ.1 a.2 + a.1 aโœ.2

      The quadratic form on Module.Dual R M ร— M defined as Q (f, x) = f x.

      Equations
        Instances For
          @[simp]
          theorem QuadraticForm.dualProd_apply (R : Type u_1) (M : Type u_2) [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Module.Dual R M ร— M) :
          (dualProd R M) p = p.1 p.2

          Any module isomorphism induces a quadratic isomorphism between the corresponding dual_prod.

          Equations
            Instances For
              @[simp]
              theorem QuadraticForm.dualProdIsometry_invFun {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M โ‰ƒโ‚—[R] N) (aโœ : Module.Dual R N ร— N) :
              @[simp]
              theorem QuadraticForm.dualProdIsometry_toFun {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M โ‰ƒโ‚—[R] N) (aโœ : Module.Dual R M ร— M) :

              QuadraticForm.dualProd commutes (isometrically) with QuadraticForm.prod.

              Equations
                Instances For
                  @[simp]
                  theorem QuadraticForm.dualProdProdIsometry_invFun {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (aโœ : (Module.Dual R M ร— M) ร— Module.Dual R N ร— N) :
                  dualProdProdIsometry.invFun aโœ = ((Module.dualProdDualEquivDual R M N).symm.prodCongr (LinearEquiv.refl R (M ร— N))).symm ((aโœ.1.1, aโœ.2.1), aโœ.1.2, aโœ.2.2)
                  @[simp]
                  theorem QuadraticForm.dualProdProdIsometry_toFun {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (aโœ : Module.Dual R (M ร— N) ร— M ร— N) :
                  dualProdProdIsometry aโœ = ((aโœ.1 โˆ˜โ‚— LinearMap.inl R M N, aโœ.2.1), aโœ.1 โˆ˜โ‚— LinearMap.inr R M N, aโœ.2.2)

                  The isometry sending (Q.prod <| -Q) to (QuadraticForm.dualProd R M).

                  This is ฯƒ from Proposition 4.8, page 84 of [Hermitian K-Theory and Geometric Applications][hyman1973]; though we swap the order of the pairs.

                  Equations
                    Instances For
                      @[simp]
                      theorem QuadraticForm.toDualProd_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) [Invertible 2] (i : M ร— M) :

                      TODO: show that QuadraticForm.toDualProd is an QuadraticForm.IsometryEquiv

                      theorem LinearMap.BilinForm.linearIndependent_of_pairwise_le_zero {ฮน : Type u_4} {R : Type u_5} {M : Type u_6} [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] [AddCommGroup M] [Module R M] (B : LinearMap.BilinForm R M) (hB : (BilinMap.toQuadraticMap B).PosDef) (f : Module.Dual R M) (v : ฮน โ†’ M) (hp : โˆ€ (i : ฮน), 0 < f (v i)) (hn : Pairwise fun (i j : ฮน) => (B (v i)) (v j) โ‰ค 0) :

                      Vectors which subtend obtuse angles with each other and all lie in the same half-space are linearly independent.

                      This is [serre1965](Ch. V, ยง9, Lemma 4).