Documentation

Mathlib.LinearAlgebra.TensorPower.Symmetric

Symmetric tensor power of a semimodule over a commutative semiring #

We define the ι-indexed symmetric tensor power of M as the PiTensorProduct quotiented by the relation that the tprod of ι elements is equal to the tprod of the same elements permuted by a permutation of ι. We denote this space by Sym[R] ι M, and the canonical multilinear map from ι → M to Sym[R] ι M by ⨂ₛ[R] i, f i. We also reserve the notation Sym[R]^n M for the nth symmetric tensor power of M, which is the symmetric tensor power indexed by Fin n.

Main definitions: #

TODO: #

inductive SymmetricPower.Rel (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
(PiTensorProduct R fun (x : ι) => M)(PiTensorProduct R fun (x : ι) => M)Prop

The relation on the ι-indexed tensor power of M where two tensors are equal if they are related by a permutation of ι.

Instances For
    noncomputable def SymmetricPower (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
    Type (max u v)

    The ι-indexed symmetric tensor power of a semimodule M over a commutative semiring R is the quotient of the ι-indexed tensor power of M by the relation that two tensors are equal if they are related by a permutation of ι.

    Equations
      Instances For

        The ι-indexed symmetric tensor power of a semimodule M over a commutative semiring R is the quotient of the ι-indexed tensor power of M by the relation that two tensors are equal if they are related by a permutation of ι.

        Equations
          Instances For

            The nth symmetric tensor power of a semimodule M over a commutative semiring R

            Equations
              Instances For
                noncomputable instance SymmetricPower.instAddCommMonoid (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
                Equations
                  noncomputable instance SymmetricPower.instAddCommGroup (ι R : Type u) [CommRing R] (M : Type v) [AddCommGroup M] [Module R M] :
                  Equations
                    theorem SymmetricPower.smul {R ι : Type u} [CommSemiring R] {M : Type v} [AddCommMonoid M] [Module R M] (r : R) (x y : PiTensorProduct R fun (x : ι) => M) (h : (addConGen (Rel R ι M)) x y) :
                    (addConGen (Rel R ι M)) (r x) (r y)
                    noncomputable def SymmetricPower.smul' {R : Type u} (ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] (r : R) :

                    Scalar multiplication by r : R. Use instead.

                    Equations
                      Instances For
                        noncomputable instance SymmetricPower.module (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
                        Equations
                          noncomputable def SymmetricPower.mk (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
                          (PiTensorProduct R fun (x : ι) => M) →ₗ[R] SymmetricPower R ι M

                          The canonical map from the ι-indexed tensor power to the symmetric tensor power.

                          Equations
                            Instances For
                              noncomputable def SymmetricPower.tprod (R : Type u) {ι : Type u} [CommSemiring R] {M : Type v} [AddCommMonoid M] [Module R M] :
                              MultilinearMap R (fun (x : ι) => M) (SymmetricPower R ι M)

                              The multilinear map that takes ι-indexed elements of M and returns their symmetric tensor power. Denoted ⨂ₛ[R] i, f i.

                              Equations
                                Instances For

                                  The multilinear map that takes ι-indexed elements of M and returns their symmetric tensor power. Denoted ⨂ₛ[R] i, f i.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem SymmetricPower.tprod_equiv {R ι : Type u} [CommSemiring R] {M : Type v} [AddCommMonoid M] [Module R M] (e : Equiv.Perm ι) (f : ιM) :
                                      (⨂ₛ[R] (i : ι), f (e i)) = ⨂ₛ[R] (i : ι), f i
                                      theorem SymmetricPower.range_mk (R ι : Type u) [CommSemiring R] (M : Type v) [AddCommMonoid M] [Module R M] :
                                      (mk R ι M).range =

                                      The pure tensors (i.e. the elements of the image of SymmetricPower.tprod) span the symmetric tensor power.