Encodable and Denumerable instances for Multiset #
If α is encodable, then so is Multiset α.
Equations
Outputs the list of differences of the input list, that is
lower [a₁, a₂, ...] n = [a₁ - n, a₂ - a₁, ...]
Equations
Instances For
Outputs the list of partial sums of the input list, that is
raise [a₁, a₂, ...] n = [n + a₁, n + a₁ + a₂, ...]
Equations
Instances For
theorem
Denumerable.isChain_raise
(l : List ℕ)
(n : ℕ)
:
List.IsChain (fun (x1 x2 : ℕ) => x1 ≤ x2) (raise l n)
theorem
Denumerable.isChain_cons_raise
(l : List ℕ)
(n : ℕ)
:
List.IsChain (fun (x1 x2 : ℕ) => x1 ≤ x2) (n :: raise l n)
@[deprecated Denumerable.isChain_cons_raise (since := "2025-09-19")]
theorem
Denumerable.raise_chain
(l : List ℕ)
(n : ℕ)
:
List.IsChain (fun (x1 x2 : ℕ) => x1 ≤ x2) (n :: raise l n)
Alias of Denumerable.isChain_cons_raise.
raise l n is a non-decreasing sequence.
If α is denumerable, then so is Multiset α. Warning: this is not the same encoding as used
in Multiset.encodable.