Documentation

Mathlib.MeasureTheory.Function.JacobianOneDim

Change of variable formulas for integrals in dimension 1 #

We record in this file versions of the general change of variables formula in integrals for functions from ℝ to ℝ. This makes it possible to replace the determinant of the FrΓ©chet derivative with the one-dimensional derivative.

We also give more specific versions of these theorems for monotone and antitone functions: this makes it possible to drop the injectivity assumption of the general theorems, as the derivative is zero on the set of non-injectivity, which means that it can be discarded.

See also Mathlib/MeasureTheory/Integral/IntervalIntegral/IntegrationByParts.lean for versions of the change of variables formula in dimension 1 for non-monotone functions, formulated with the interval integral and with stronger requirements on the integrand.

theorem MeasureTheory.lintegral_image_eq_lintegral_abs_deriv_mul {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : ℝ β†’ ENNReal) :
∫⁻ (x : ℝ) in f '' s, g x = ∫⁻ (x : ℝ) in s, ENNReal.ofReal |f' x| * g (f x)

Integrability in the change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s βŠ† ℝ, then the Lebesgue integral of a function g : ℝ β†’ ℝβ‰₯0∞ on f '' s coincides with the Lebesgue integral of |(f' x)| * g ∘ f on s.

theorem MeasureTheory.integrableOn_image_iff_integrableOn_abs_deriv_smul {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : ℝ β†’ F) :
IntegrableOn g (f '' s) volume ↔ IntegrableOn (fun (x : ℝ) => |f' x| β€’ g (f x)) s volume

Integrability in the change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s βŠ† ℝ, then a function g : ℝ β†’ F is integrable on f '' s if and only if |(f' x)| β€’ g ∘ f is integrable on s.

theorem MeasureTheory.integral_image_eq_integral_abs_deriv_smul {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : Set.InjOn f s) (g : ℝ β†’ F) :
∫ (x : ℝ) in f '' s, g x = ∫ (x : ℝ) in s, |f' x| β€’ g (f x)

Change of variable formula for differentiable functions (one-variable version): if a function f is injective and differentiable on a measurable set s βŠ† ℝ, then the Bochner integral of a function g : ℝ β†’ F on f '' s coincides with the integral of |(f' x)| β€’ g ∘ f on s.

theorem MeasureTheory.exists_decomposition_of_monotoneOn_hasDerivWithinAt {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf : MonotoneOn f s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) :
βˆƒ (a : Set ℝ) (b : Set ℝ) (c : Set ℝ), a βˆͺ (b βˆͺ c) = s ∧ MeasurableSet a ∧ MeasurableSet b ∧ MeasurableSet c ∧ Disjoint a (b βˆͺ c) ∧ Disjoint b c ∧ a.Countable ∧ (f '' b).Countable ∧ (βˆ€ x ∈ b, f' x = 0) ∧ (βˆ€ x ∈ c, 0 ≀ f' x) ∧ Set.InjOn f c

Technical structure theorem for monotone differentiable functions.

If a function f is monotone on a measurable set and has a derivative f', one can decompose the set as a disjoint union a βˆͺ b βˆͺ c of measurable sets where a is countable (the points which are isolated on the left or on the right, where f' is not well controlled), f is locally constant on b and f' = 0 there (the preimages of the countably many points with several preimages), and f is injective on c with nonnegative derivative (the other points).

theorem MeasureTheory.lintegral_image_eq_lintegral_deriv_mul_of_monotoneOn {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : MonotoneOn f s) (u : ℝ β†’ ENNReal) :
∫⁻ (x : ℝ) in f '' s, u x = ∫⁻ (x : ℝ) in s, ENNReal.ofReal (f' x) * u (f x)
theorem MeasureTheory.lintegral_deriv_eq_volume_image_of_monotoneOn {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : MonotoneOn f s) :

Change of variable formula for differentiable functions, set version: if a real function f is monotone and differentiable on a measurable set s, then the measure of f '' s is given by the integral of f' x on s . Note that the measurability of f '' s is given by MeasurableSet.image_of_monotoneOn.

theorem MeasureTheory.integrableOn_image_iff_integrableOn_deriv_smul_of_monotoneOn {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : MonotoneOn f s) (g : ℝ β†’ F) :
IntegrableOn g (f '' s) volume ↔ IntegrableOn (fun (x : ℝ) => f' x β€’ g (f x)) s volume

Integrability in the change of variable formula for differentiable functions: if a real function f is monotone and differentiable on a measurable set s, then a function g : ℝ β†’ F is integrable on f '' s if and only if f' x β€’ g ∘ f is integrable on s .

theorem MeasureTheory.integral_image_eq_integral_deriv_smul_of_monotoneOn {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : MonotoneOn f s) (g : ℝ β†’ F) :
∫ (x : ℝ) in f '' s, g x = ∫ (x : ℝ) in s, f' x β€’ g (f x)

Change of variable formula for differentiable functions: if a real function f is monotone and differentiable on a measurable set s, then the Bochner integral of a function g : ℝ β†’ F on f '' s coincides with the integral of (f' x) β€’ g ∘ f on s .

theorem MeasureTheory.lintegral_image_eq_lintegral_deriv_mul_of_antitoneOn {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : AntitoneOn f s) (u : ℝ β†’ ENNReal) :
∫⁻ (x : ℝ) in f '' s, u x = ∫⁻ (x : ℝ) in s, ENNReal.ofReal (-f' x) * u (f x)
theorem MeasureTheory.lintegral_deriv_eq_volume_image_of_antitoneOn {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : AntitoneOn f s) :

Change of variable formula for differentiable functions, set version: if a real function f is antitone and differentiable on a measurable set s, then the measure of f '' s is given by the integral of -f' x on s . Note that the measurability of f '' s is given by MeasurableSet.image_of_antitoneOn.

theorem MeasureTheory.integrableOn_image_iff_integrableOn_deriv_smul_of_antitoneOn {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : AntitoneOn f s) (g : ℝ β†’ F) :
IntegrableOn g (f '' s) volume ↔ IntegrableOn (fun (x : ℝ) => -f' x β€’ g (f x)) s volume

Integrability in the change of variable formula for differentiable functions: if a real function f is antitone and differentiable on a measurable set s, then a function g : ℝ β†’ F is integrable on f '' s if and only if -f' x β€’ g ∘ f is integrable on s .

theorem MeasureTheory.integral_image_eq_integral_deriv_smul_of_antitone {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] {s : Set ℝ} {f f' : ℝ β†’ ℝ} (hs : MeasurableSet s) (hf' : βˆ€ x ∈ s, HasDerivWithinAt f (f' x) s x) (hf : AntitoneOn f s) (g : ℝ β†’ F) :
∫ (x : ℝ) in f '' s, g x = ∫ (x : ℝ) in s, -f' x β€’ g (f x)

Change of variable formula for differentiable functions: if a real function f is antitone and differentiable on a measurable set s, then the Bochner integral of a function g : ℝ β†’ F on f '' s coincides with the integral of (-f' x) β€’ g ∘ f on s .

theorem MeasurableEquiv.withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul (f : ℝ ≃ᡐ ℝ) {s : Set ℝ} (hs : MeasurableSet s) {g : ℝ β†’ ℝ} (hg : βˆ€α΅ (x : ℝ), x ∈ ⇑f '' s β†’ 0 ≀ g x) (hf_int : MeasureTheory.IntegrableOn g (⇑f '' s) MeasureTheory.volume) {f' : ℝ β†’ ℝ} (hf' : βˆ€ x ∈ s, HasDerivWithinAt (⇑f) (f' x) s x) :