Documentation

Mathlib.MeasureTheory.Integral.IntervalIntegral.AbsolutelyContinuousFun

Fundamental theorem of calculus and integration by parts for absolutely continuous functions #

This file proves that:

Tags #

absolutely continuous, fundamental theorem of calculus, integration by parts

theorem exists_dist_slope_lt_pairwiseDisjoint_hasSum {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] {f f' : โ„ โ†’ F} {d b ฮท : โ„} (hdb : d โ‰ค b) (hf : โˆ€แต (x : โ„), x โˆˆ Set.Ioo d b โ†’ HasDerivAt f (f' x) x) (hฮท : 0 < ฮท) :
โˆƒ (u : Set (โ„ ร— โ„)), (โˆ€ z โˆˆ u, (d < z.1 โˆง z.1 < z.2 โˆง z.2 < b) โˆง dist (slope f z.1 z.2) (f' z.1) < ฮท) โˆง (u.PairwiseDisjoint fun (z : โ„ ร— โ„) => Set.Icc z.1 z.2) โˆง HasSum (fun (z : โ†‘u) => (โ†‘z).2 - (โ†‘z).1) (b - d)

If f has derivative f' a.e. on [d, b] and ฮท is positive, then there is a collection of pairwise disjoint closed subintervals of [a, b] of total length b - a where the slope of f on each subinterval [x, y] differs from f' x by at most ฮท.

theorem AbsolutelyContinuousOnInterval.dist_le_of_pairwiseDisjoint_hasSum {X : Type u_1} [PseudoMetricSpace X] {f : โ„ โ†’ X} {d b y : โ„} (hdb : d โ‰ค b) (hf : AbsolutelyContinuousOnInterval f d b) {u : Set (โ„ ร— โ„)} (huโ‚ : โˆ€ z โˆˆ u, d < z.1 โˆง z.1 < z.2 โˆง z.2 < b) (huโ‚‚ : u.PairwiseDisjoint fun (z : โ„ ร— โ„) => Set.Icc z.1 z.2) (huโ‚ƒ : HasSum (fun (z : โ†‘u) => (โ†‘z).2 - (โ†‘z).1) (b - d)) (huโ‚„ : HasSum (fun (z : โ†‘u) => dist (f (โ†‘z).1) (f (โ†‘z).2)) y) :
dist (f d) (f b) โ‰ค y

If f is absolutely continuous on [d, b] and there is a collection of pairwise disjoint closed subintervals of (d, b) of total length b - d such that the sum of dist (f x) (f y) for [x, y] in the collection is equal to y, then dist (f b) (f d) โ‰ค y.

theorem AbsolutelyContinuousOnInterval.const_of_ae_hasDerivAt_zero {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] {f : โ„ โ†’ F} {a b : โ„} (hf : AbsolutelyContinuousOnInterval f a b) (hfโ‚€ : โˆ€แต (x : โ„), x โˆˆ Set.uIcc a b โ†’ HasDerivAt f 0 x) :
โˆƒ (C : F), โˆ€ x โˆˆ Set.uIcc a b, f x = C

If f is absolutely continuous on uIcc a b and f' x = 0 for a.e. x โˆˆ uIcc a b, then f is constant on uIcc a b.

Fundamental Theorem of Calculus for absolutely continuous functions: if f is absolutely continuous on uIcc a b, then โˆซ (x : โ„) in a..b, deriv f x = f b - f a.

theorem AbsolutelyContinuousOnInterval.integral_deriv_mul_eq_sub {f g : โ„ โ†’ โ„} {a b : โ„} (hf : AbsolutelyContinuousOnInterval f a b) (hg : AbsolutelyContinuousOnInterval g a b) :
โˆซ (x : โ„) in a..b, deriv f x * g x + f x * deriv g x = f b * g b - f a * g a

The integral of the derivative of a product of two absolutely continuous functions.

Integration by parts for absolutely continuous functions.