Documentation

Mathlib.MeasureTheory.Integral.IntervalIntegral.DistLEIntegral

Displacement is at most the integral of the speed #

In this file we prove several version of the following fact: the displacement (dist (f a) (f b)) is at most the integral of β€–deriv fβ€– over [a, b].

theorem norm_sub_le_integral_of_norm_deriv_le_of_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace ℝ E] {f : ℝ β†’ E} {a b : ℝ} {B : ℝ β†’ ℝ} (hab : a ≀ b) (hfc : ContinuousOn f (Set.Icc a b)) (hfd : DifferentiableOn ℝ f (Set.Ioo a b)) (hfB : βˆ€α΅ (t : ℝ), t ∈ Set.Ioo a b β†’ β€–deriv f tβ€– ≀ B t) (hBi : IntervalIntegrable B MeasureTheory.volume a b) :
β€–f b - f aβ€– ≀ ∫ (t : ℝ) in a..b, B t

Displacement is at most the integral of an upper estimate on the speed.

Let f : ℝ β†’ E be a function which is continuous on a closed interval [a, b] and is differentiable on the open interval (a, b). If B t is an integrable upper estimate on β€–f' tβ€–, a < t < b, then β€–f b - f aβ€– ≀ ∫ t in a..b, B t.

Let f : ℝ β†’ E be a function which is continuous on [a, b] and is differentiable on (a, b). Suppose that β€–f' tβ€– ≀ C for a.e. t ∈ (a, b). Then the distance between f a and f b is at most C times the measure of x ∈ (a, b) such that f' x β‰  0.

This lemma is useful, if f is known to have zero derivative at most points of [a, b].

theorem norm_sub_le_mul_volume_of_norm_lineDeriv_le {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {a b : E} {C : ℝ} (hfc : ContinuousOn f (segment ℝ a b)) (hfd : βˆ€ t ∈ Set.Ioo 0 1, LineDifferentiableAt ℝ f ((AffineMap.lineMap a b) t) (b - a)) (hf' : βˆ€α΅ (t : ℝ), t ∈ Set.Ioo 0 1 β†’ β€–lineDeriv ℝ f ((AffineMap.lineMap a b) t) (b - a)β€– ≀ C) :

Consider a function f : E β†’ F continuous on a segment [a, b] and line differentiable in the direction b - a at all points of the open segment (a, b).

If β€–βˆ‚_{b - a} fβ€– ≀ C at a.e. all points of the open segment, then β€–f b - f aβ€– ≀ C * volume s, where s is the set of points t ∈ Ioo 0 1 such that f has nonzero line derivative in the direction b - a at lineMap a b t.

theorem norm_sub_le_mul_volume_of_norm_fderiv_le {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {a b : E} {C : ℝ} {s : Set E} (hs : IsOpen s) (hf : DiffContOnCl ℝ f s) (hab : openSegment ℝ a b βŠ† s) (hC : βˆ€ x ∈ s, β€–fderiv ℝ f xβ€– ≀ C) :

Let f : E β†’ F be a function differentiable on a set s and continuous on its closure. Let a, b be two points such that the open segment connecting a to b is a subset of s.

If β€–Dfβ€– ≀ C everywhere on s then β€–f b - f aβ€– ≀ C * volume u, where u is the set of points t ∈ Ioo 0 1 such that f has nonzero derivative at lineMap a b t.

theorem sub_isBigO_norm_rpow_add_one_of_fderiv {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {a : E} {r : ℝ} (hr : 0 ≀ r) (hdf : βˆ€αΆ  (x : E) in nhds a, DifferentiableAt ℝ f x) (hderiv : fderiv ℝ f =O[nhds a] fun (x : E) => β€–x - aβ€– ^ r) :
(fun (x : E) => f x - f a) =O[nhds a] fun (x : E) => β€–x - aβ€– ^ (r + 1)

Let f : E β†’ F be a function differentiable in a neighborhood of a. If $Df(x) = O(β€–x - aβ€– ^ r)$ as x β†’ a, where r β‰₯ 0, then $f(x) - f(a) = O(β€–x - aβ€– ^ {r + 1})$ as x β†’ a.

theorem isBigO_norm_rpow_add_one_of_fderiv_of_apply_eq_zero {E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} {a : E} {r : ℝ} (hr : 0 ≀ r) (hdf : βˆ€αΆ  (x : E) in nhds a, DifferentiableAt ℝ f x) (hderiv : fderiv ℝ f =O[nhds a] fun (x : E) => β€–x - aβ€– ^ r) (hfβ‚€ : f a = 0) :
f =O[nhds a] fun (x : E) => β€–x - aβ€– ^ (r + 1)

Let f : E β†’ F be a function differentiable in a neighborhood of a. If $Df(x) = O(β€–x - aβ€– ^ r)$ as x β†’ a, where r β‰₯ 0, and f a = 0, then $f(x) = O(β€–x - aβ€– ^ {r + 1})$ as x β†’ a.