Documentation

Mathlib.MeasureTheory.SpecificCodomains.ContinuousMapZero

Specific results about ContinuousMapZero-valued integration #

In this file, we collect a few results regarding integrability, on a measure space (X, ฮผ), of a C(Y, E)โ‚€-valued function, where Y is a compact topological space with a distinguished 0, and E is a normed group.

The structure of this file is largely similar to that of Mathlib.MeasureTheory.SpecificCodomains.ContinuousMap, which contains a more detailed module docstring.

theorem ContinuousMapZero.hasFiniteIntegral_of_bound {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] {ฮผ : MeasureTheory.Measure X} [TopologicalSpace Y] {E : Type u_3} [NormedAddCommGroup E] [CompactSpace Y] [Zero Y] (f : X โ†’ ContinuousMapZero Y E) (bound : X โ†’ โ„) (bound_int : MeasureTheory.HasFiniteIntegral bound ฮผ) (bound_ge : โˆ€แต (x : X) โˆ‚ฮผ, โˆ€ (y : Y), โ€–(f x) yโ€– โ‰ค bound x) :

A natural criterion for HasFiniteIntegral of a C(Y, E)โ‚€-valued function is the existence of some positive function with finite integral such that โˆ€แต x โˆ‚ฮผ, โˆ€ y : Y, โ€–f x yโ€– โ‰ค bound x. Note that there is no dominated convergence here (hence no first-countability assumption on Y). We are just using the properties of Banach-space-valued integration.

theorem ContinuousMapZero.hasFiniteIntegral_mkD_of_bound {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] {ฮผ : MeasureTheory.Measure X} [TopologicalSpace Y] {E : Type u_3} [NormedAddCommGroup E] [CompactSpace Y] [Zero Y] (f : X โ†’ Y โ†’ E) (g : ContinuousMapZero Y E) (f_ae_cont : โˆ€แต (x : X) โˆ‚ฮผ, Continuous (f x)) (f_ae_zero : โˆ€แต (x : X) โˆ‚ฮผ, f x 0 = 0) (bound : X โ†’ โ„) (bound_int : MeasureTheory.HasFiniteIntegral bound ฮผ) (bound_ge : โˆ€แต (x : X) โˆ‚ฮผ, โˆ€ (y : Y), โ€–f x yโ€– โ‰ค bound x) :
MeasureTheory.HasFiniteIntegral (fun (x : X) => mkD (f x) g) ฮผ

A variant of ContinuousMapZero.hasFiniteIntegral_of_bound spelled in terms of ContinuousMapZero.mkD.

theorem ContinuousMapZero.hasFiniteIntegral_mkD_restrict_of_bound {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] {ฮผ : MeasureTheory.Measure X} [TopologicalSpace Y] {E : Type u_3} [NormedAddCommGroup E] {s : Set Y} [CompactSpace โ†‘s] [Zero โ†‘s] (f : X โ†’ Y โ†’ E) (g : ContinuousMapZero (โ†‘s) E) (f_ae_contOn : โˆ€แต (x : X) โˆ‚ฮผ, ContinuousOn (f x) s) (f_ae_zero : โˆ€แต (x : X) โˆ‚ฮผ, f x โ†‘0 = 0) (bound : X โ†’ โ„) (bound_int : MeasureTheory.HasFiniteIntegral bound ฮผ) (bound_ge : โˆ€แต (x : X) โˆ‚ฮผ, โˆ€ y โˆˆ s, โ€–f x yโ€– โ‰ค bound x) :
MeasureTheory.HasFiniteIntegral (fun (x : X) => mkD (s.restrict (f x)) g) ฮผ

A variant of ContinuousMapZero.hasFiniteIntegral_mkD_of_bound for a family of functions which are continuous on a compact set.

theorem ContinuousMapZero.aeStronglyMeasurable_mkD_restrict_of_uncurry {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] {ฮผ : MeasureTheory.Measure X} [TopologicalSpace Y] {E : Type u_3} [NormedAddCommGroup E] {t : Set Y} [CompactSpace โ†‘t] [Zero โ†‘t] [TopologicalSpace X] [OpensMeasurableSpace X] [SecondCountableTopologyEither X C(โ†‘t, E)] (f : X โ†’ Y โ†’ E) (g : ContinuousMapZero (โ†‘t) E) (f_cont : ContinuousOn (Function.uncurry f) (Set.univ ร—หข t)) (f_zero : โˆ€แต (x : X) โˆ‚ฮผ, f x โ†‘0 = 0) :
MeasureTheory.AEStronglyMeasurable (fun (x : X) => mkD (t.restrict (f x)) g) ฮผ
theorem ContinuousMapZero.aeStronglyMeasurable_restrict_mkD_restrict_of_uncurry {X : Type u_1} {Y : Type u_2} [MeasurableSpace X] {ฮผ : MeasureTheory.Measure X} [TopologicalSpace Y] {E : Type u_3} [NormedAddCommGroup E] {s : Set X} {t : Set Y} [CompactSpace โ†‘t] [Zero โ†‘t] [TopologicalSpace X] [OpensMeasurableSpace X] [SecondCountableTopologyEither X C(โ†‘t, E)] (hs : MeasurableSet s) (f : X โ†’ Y โ†’ E) (g : ContinuousMapZero (โ†‘t) E) (f_cont : ContinuousOn (Function.uncurry f) (s ร—หข t)) (f_zero : โˆ€แต (x : X) โˆ‚ฮผ.restrict s, f x โ†‘0 = 0) :
MeasureTheory.AEStronglyMeasurable (fun (x : X) => mkD (t.restrict (f x)) g) (ฮผ.restrict s)