Documentation

Mathlib.ModelTheory.FinitelyGenerated

Finitely Generated First-Order Structures #

This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library.

Main Definitions #

TODO #

Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others.

A substructure of M is finitely generated if it is the closure of a finite subset of M.

Equations
    Instances For
      theorem FirstOrder.Language.Substructure.FG.sup {L : Language} {M : Type u_1} [L.Structure M] {N₁ N₂ : L.Substructure M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) :
      (N₁N₂).FG
      theorem FirstOrder.Language.Substructure.FG.map {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Hom M N) {s : L.Substructure M} (hs : s.FG) :
      theorem FirstOrder.Language.Substructure.FG.of_map_embedding {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Embedding M N) {s : L.Substructure M} (hs : (Substructure.map f.toHom s).FG) :
      s.FG

      A substructure of M is countably generated if it is the closure of a countable subset of M.

      Equations
        Instances For
          theorem FirstOrder.Language.Substructure.CG.sup {L : Language} {M : Type u_1} [L.Structure M] {N₁ N₂ : L.Substructure M} (hN₁ : N₁.CG) (hN₂ : N₂.CG) :
          (N₁N₂).CG
          theorem FirstOrder.Language.Substructure.CG.map {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Hom M N) {s : L.Substructure M} (hs : s.CG) :
          theorem FirstOrder.Language.Substructure.CG.of_map_embedding {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Embedding M N) {s : L.Substructure M} (hs : (Substructure.map f.toHom s).CG) :
          s.CG

          A structure is finitely generated if it is the closure of a finite subset.

          Instances

            A structure is countably generated if it is the closure of a countable subset.

            Instances

              An equivalent expression of Structure.FG in terms of Set.Finite instead of Finset.

              theorem FirstOrder.Language.Structure.FG.range {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (h : FG L M) (f : L.Hom M N) :
              theorem FirstOrder.Language.Structure.FG.map_of_surjective {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (h : FG L M) (f : L.Hom M N) (hs : Function.Surjective f) :
              FG L N

              An equivalent expression of Structure.cg.

              theorem FirstOrder.Language.Structure.CG.range {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (h : CG L M) (f : L.Hom M N) :
              theorem FirstOrder.Language.Structure.CG.map_of_surjective {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (h : CG L M) (f : L.Hom M N) (hs : Function.Surjective f) :
              CG L N
              @[instance 100]
              instance FirstOrder.Language.Structure.cg_of_fg {L : Language} {M : Type u_1} [L.Structure M] [h : FG L M] :
              CG L M
              theorem FirstOrder.Language.Equiv.fg_iff {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Equiv M N) :
              theorem FirstOrder.Language.Equiv.cg_iff {L : Language} {M : Type u_1} [L.Structure M] {N : Type u_2} [L.Structure N] (f : L.Equiv M N) :