Documentation

Mathlib.NumberTheory.BernoulliPolynomials

Bernoulli polynomials #

The Bernoulli polynomials are an important tool obtained from Bernoulli numbers.

Mathematical overview #

The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = โˆ‘_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = โˆ‘_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$

Implementation detail #

Bernoulli polynomials are defined using bernoulli, the Bernoulli numbers.

Main theorems #

The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers.

Equations
    Instances For
      theorem Polynomial.bernoulli_def (n : โ„•) :
      bernoulli n = โˆ‘ i โˆˆ Finset.range (n + 1), (monomial i) (_root_.bernoulli (n - i) * โ†‘(n.choose i))
      @[simp]
      theorem Polynomial.sum_bernoulli (n : โ„•) :
      โˆ‘ k โˆˆ Finset.range (n + 1), โ†‘((n + 1).choose k) โ€ข bernoulli k = (monomial n) (โ†‘n + 1)
      theorem Polynomial.sum_range_pow_eq_bernoulli_sub (n p : โ„•) :
      (โ†‘p + 1) * โˆ‘ k โˆˆ Finset.range n, โ†‘k ^ p = eval (โ†‘n) (bernoulli p.succ) - _root_.bernoulli p.succ

      Another version of sum_range_pow.

      theorem Polynomial.bernoulli_succ_eval (n p : โ„•) :
      eval (โ†‘n) (bernoulli p.succ) = _root_.bernoulli p.succ + (โ†‘p + 1) * โˆ‘ k โˆˆ Finset.range n, โ†‘k ^ p

      Rearrangement of Polynomial.sum_range_pow_eq_bernoulli_sub.

      theorem Polynomial.bernoulli_eval_neg (n : โ„•) (x : โ„š) :
      eval (-x) (bernoulli n) = (-1) ^ n * (eval x (bernoulli n) + โ†‘n * x ^ (n - 1))

      The theorem that $(e^X - 1) * โˆ‘ Bโ‚™(t)* X^n/n! = Xe^{tX}$