Bernoulli polynomials #
The Bernoulli polynomials are an important tool obtained from Bernoulli numbers.
Mathematical overview #
The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = โ_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = โ_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$
Implementation detail #
Bernoulli polynomials are defined using bernoulli, the Bernoulli numbers.
Main theorems #
sum_bernoulli: The sum of the $k^\mathrm{th}$ Bernoulli polynomial with binomial coefficients up tonis(n + 1) * X^n.Polynomial.bernoulli_generating_function: The Bernoulli polynomials act as generating functions for the exponential.
The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers.
Equations
Instances For
theorem
Polynomial.bernoulli_def
(n : โ)
:
bernoulli n = โ i โ Finset.range (n + 1), (monomial i) (_root_.bernoulli (n - i) * โ(n.choose i))
@[simp]
@[simp]
@[simp]
Another version of Polynomial.sum_bernoulli.
Another version of sum_range_pow.
Rearrangement of Polynomial.sum_range_pow_eq_bernoulli_sub.
theorem
Polynomial.bernoulli_generating_function
{A : Type u_1}
[CommRing A]
[Algebra โ A]
(t : A)
:
(PowerSeries.mk fun (n : โ) => (aeval t) ((1 / โn.factorial) โข bernoulli n)) * (PowerSeries.exp A - 1) = PowerSeries.X * (PowerSeries.rescale t) (PowerSeries.exp A)
The theorem that $(e^X - 1) * โ Bโ(t)* X^n/n! = Xe^{tX}$