Reindexed basis #
This file introduces an equivalence between the set of embeddings of K into โ and the
index set of the chosen basis of the ring of integers of K.
Tags #
house, number field, algebraic number
@[reducible, inline]
An equivalence between the set of embeddings of K into โ and the
index set of the chosen basis of the ring of integers of K.
Equations
Instances For
@[reducible, inline]
The basis matrix for the embeddings of K into โ. This matrix is formed by
taking the lattice basis vectors of K and reindexing them according to the
equivalence equivReindex, then transposing the resulting matrix.
Equations
Instances For
theorem
NumberField.basisMatrix_eq_embeddingsMatrixReindex
(K : Type u_1)
[Field K]
[NumberField K]
:
basisMatrix K = Algebra.embeddingsMatrixReindex โ โ (โ(integralBasis K) โ โ(equivReindex K)) RingHom.equivRatAlgHom
theorem
NumberField.conj_basisMatrix
(K : Type u_1)
[Field K]
[NumberField K]
:
(basisMatrix K).map โ(starRingEnd โ) = (Matrix.reindex (Equiv.refl (K โ+* โ)) (Function.Involutive.toPerm ComplexEmbedding.conjugate โฏ)) (basisMatrix K)
theorem
NumberField.det_of_basisMatrix_non_zero
(K : Type u_1)
[Field K]
[NumberField K]
[DecidableEq (K โ+* โ)]
:
instance
NumberField.instInvertibleMatrixRingHomComplexBasisMatrix
(K : Type u_1)
[Field K]
[NumberField K]
[DecidableEq (K โ+* โ)]
:
Equations
theorem
NumberField.canonicalEmbedding_eq_basisMatrix_mulVec
{K : Type u_1}
[Field K]
[NumberField K]
(ฮฑ : K)
:
(canonicalEmbedding K) ฮฑ = (basisMatrix K).transpose.mulVec fun (i : K โ+* โ) => โ((((integralBasis K).reindex (equivReindex K).symm).repr ฮฑ) i)
theorem
NumberField.inverse_basisMatrix_mulVec_eq_repr
{K : Type u_1}
[Field K]
[NumberField K]
[DecidableEq (K โ+* โ)]
(ฮฑ : RingOfIntegers K)
(i : K โ+* โ)
:
(basisMatrix K).transposeโปยน.mulVec (fun (j : K โ+* โ) => (canonicalEmbedding K) ((algebraMap (RingOfIntegers K) K) ฮฑ) j)
i = โ((((integralBasis K).reindex (equivReindex K).symm).repr โฮฑ) i)