Documentation

Mathlib.NumberTheory.Transcendental.Lindemann.AnalyticalPart

Analytic part of the Lindemann-Weierstrass theorem #

theorem LindemannWeierstrass.exp_polynomial_approx (f : Polynomial ℤ) (hf : Polynomial.eval 0 f ≠ 0) :
∃ (c : ā„), āˆ€ p > (Polynomial.eval 0 f).natAbs, Nat.Prime p → ∃ (n : ℤ), ¬↑p ∣ n ∧ ∃ (gp : Polynomial ℤ), gp.natDegree ≤ p * f.natDegree - 1 ∧ āˆ€ {r : ā„‚}, r ∈ f.aroots ā„‚ → ‖n • Complex.exp r - p • (Polynomial.aeval r) gp‖ ≤ c ^ p / ↑(p - 1).factorial

See equation (68), page 285 of [Jacobson, Basic Algebra I, 4.12][jacobson1974].

Given a polynomial f with integer coefficients, we can find a constant c : ā„ and for each prime p > |fā‚€|, nā‚š : ℤ and gā‚š : ℤ[X] such that

  • p does not divide nā‚š
  • deg(gā‚š) < p * deg(f)
  • all complex roots r of f satisfy |nā‚š * e ^ r - p * gā‚š(r)| ≤ c ^ p / (p - 1)!

In the proof of Lindemann-Weierstrass, we will take f to be a polynomial whose complex roots are the algebraic numbers whose exponentials we want to prove to be linearly independent.

Note: Jacobson writes Nā‚š for our nā‚š and M for our c (modulo a constant factor).