The category of frames.
- of :: (
- carrier : Type u_1
The underlying frame.
- str : Order.Frame βself
- )
Instances For
instance
Frm.instConcreteCategoryFrameHomCarrier :
CategoryTheory.ConcreteCategory Frm fun (x1 x2 : Frm) => FrameHom βx1 βx2
Equations
@[reducible, inline]
Typecheck a FrameHom as a morphism in Frm.
Equations
Instances For
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
Frm.ext
{X Y : Frm}
{f g : X βΆ Y}
(w : β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
Frm.ext_iff
{X Y : Frm}
{f g : X βΆ Y}
:
f = g β β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Frm.ofHom_comp
{X Y Z : Type u}
[Order.Frame X]
[Order.Frame Y]
[Order.Frame Z]
(f : FrameHom X Y)
(g : FrameHom Y Z)
:
Constructs an isomorphism of frames from an order isomorphism between them.