Documentation

Mathlib.Order.Category.Frm

The category of frames #

This file defines Frm, the category of frames.

References #

structure Frm :
Type (u_1 + 1)

The category of frames.

  • of :: (
  • )
Instances For
    structure Frm.Hom (X Y : Frm) :

    The type of morphisms in Frm R.

    Instances For
      theorem Frm.Hom.ext {X Y : Frm} {x y : X.Hom Y} (hom' : x.hom' = y.hom') :
      x = y
      theorem Frm.Hom.ext_iff {X Y : Frm} {x y : X.Hom Y} :
      x = y ↔ x.hom' = y.hom'
      @[reducible, inline]
      abbrev Frm.Hom.hom {X Y : Frm} (f : X.Hom Y) :
      FrameHom ↑X ↑Y

      Turn a morphism in Frm back into a FrameHom.

      Equations
        Instances For
          @[reducible, inline]
          abbrev Frm.ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
          { carrier := X, str := inst✝ } ⟢ { carrier := Y, str := inst✝¹ }

          Typecheck a FrameHom as a morphism in Frm.

          Equations
            Instances For
              def Frm.Hom.Simps.hom (X Y : Frm) (f : X.Hom Y) :
              FrameHom ↑X ↑Y

              Use the ConcreteCategory.hom projection for @[simps] lemmas.

              Equations
                Instances For

                  The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

                  theorem Frm.ext {X Y : Frm} {f g : X ⟢ Y} (w : βˆ€ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) :
                  f = g
                  theorem Frm.coe_of (X : Type u) [Order.Frame X] :
                  ↑{ carrier := X, str := inst✝ } = X
                  theorem Frm.hom_ext {X Y : Frm} {f g : X ⟢ Y} (hf : Hom.hom f = Hom.hom g) :
                  f = g
                  theorem Frm.hom_ext_iff {X Y : Frm} {f g : X ⟢ Y} :
                  @[simp]
                  theorem Frm.hom_ofHom {X Y : Type u} [Order.Frame X] [Order.Frame Y] (f : FrameHom X Y) :
                  @[simp]
                  theorem Frm.ofHom_hom {X Y : Frm} (f : X ⟢ Y) :
                  @[simp]
                  theorem Frm.ofHom_id {X : Type u} [Order.Frame X] :
                  ofHom (FrameHom.id X) = CategoryTheory.CategoryStruct.id { carrier := X, str := inst✝ }
                  def Frm.Iso.mk {Ξ± Ξ² : Frm} (e : ↑α ≃o ↑β) :
                  Ξ± β‰… Ξ²

                  Constructs an isomorphism of frames from an order isomorphism between them.

                  Equations
                    Instances For
                      @[simp]
                      theorem Frm.Iso.mk_hom {Ξ± Ξ² : Frm} (e : ↑α ≃o ↑β) :
                      (mk e).hom = ofHom { toFun := ⇑e, map_inf' := β‹―, map_top' := β‹―, map_sSup' := β‹― }
                      @[simp]
                      theorem Frm.Iso.mk_inv {Ξ± Ξ² : Frm} (e : ↑α ≃o ↑β) :
                      (mk e).inv = ofHom { toFun := ⇑e.symm, map_inf' := β‹―, map_top' := β‹―, map_sSup' := β‹― }