Documentation

Mathlib.Order.Interval.Finset.SuccPred

Finset intervals in a successor-predecessor order #

This file proves relations between the various finset intervals in a successor/predecessor order.

Notes #

Please keep in sync with:

TODO #

Copy over insert lemmas from Mathlib/Order/Interval/Finset/Nat.lean.

Two-sided intervals #

Orders possibly with maximal elements #

Equalities of intervals #
Inserting into intervals #
theorem Finset.insert_Icc_succ_left_eq_Icc {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a b) :
insert a (Icc (Order.succ a) b) = Icc a b
theorem Finset.insert_Ico_succ_left_eq_Ico {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a < b) :
insert a (Ico (Order.succ a) b) = Ico a b

Orders with no maximal elements #

Equalities of intervals #
Inserting into intervals #
theorem Finset.insert_Ico_right_eq_Ico_succ {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a b) :
insert b (Ico a b) = Ico a (Order.succ b)

Orders possibly with minimal elements #

Equalities of intervals #
Inserting into intervals #
theorem Finset.insert_Icc_pred_right_eq_Icc {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [PredOrder α] {a b : α} (h : a b) :
insert b (Icc a (Order.pred b)) = Icc a b
theorem Finset.insert_Ioc_pred_right_eq_Ioc {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [PredOrder α] {a b : α} (h : a < b) :
insert b (Ioc a (Order.pred b)) = Ioc a b

Orders with no minimal elements #

Equalities of intervals #
Inserting into intervals #
theorem Finset.insert_Ioc_left_eq_Ioc_pred {α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [PredOrder α] {a b : α} [NoMinOrder α] (h : a b) :
insert a (Ioc a b) = Ioc (Order.pred a) b

One-sided interval towards #

One-sided interval towards #