Interval properties in linear orders #
Since every pair of elements are comparable in a linear order, intervals over them are better behaved. This file collects their properties under this assumption.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.Ioo_subset_Ioo_iff
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
[DenselyOrdered α]
(h₁ : a₁ < b₁)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Two infinite intervals #
@[simp]
@[simp]
@[simp]
@[simp]
A finite and an infinite interval #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
An infinite and a finite interval #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Two finite intervals, I?o and Ic? #
@[simp]
theorem
Set.Ioo_union_Ico_eq_Ioo
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b ≤ c)
:
@[simp]
theorem
Set.Ico_union_Ico_eq_Ico
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b ≤ c)
:
@[simp]
theorem
Set.Ico_union_Icc_eq_Icc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b ≤ c)
:
@[simp]
theorem
Set.Ioo_union_Icc_eq_Ioc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b ≤ c)
:
Two finite intervals, I?c and Io? #
@[simp]
theorem
Set.Ioc_union_Ioo_eq_Ioo
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b < c)
:
@[simp]
theorem
Set.Icc_union_Ioo_eq_Ico
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b < c)
:
@[simp]
theorem
Set.Icc_union_Ioc_eq_Icc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b ≤ c)
:
@[simp]
theorem
Set.Ioc_union_Ioc_eq_Ioc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b ≤ c)
:
Two finite intervals with a common point #
@[simp]
theorem
Set.Ioc_union_Ico_eq_Ioo
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b < c)
:
@[simp]
theorem
Set.Icc_union_Ico_eq_Ico
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b < c)
:
@[simp]
theorem
Set.Icc_union_Icc_eq_Icc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a ≤ b)
(h₂ : b ≤ c)
:
@[simp]
theorem
Set.Ioc_union_Icc_eq_Ioc
{α : Type u_1}
[LinearOrder α]
{a b c : α}
(h₁ : a < b)
(h₂ : b ≤ c)
:
Intersection, difference, complement #
@[simp]
@[simp]
theorem
Set.Ioc_inter_Ioo_of_left_lt
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
(h : b₁ < b₂)
:
theorem
Set.Ioc_inter_Ioo_of_right_le
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
(h : b₂ ≤ b₁)
:
theorem
Set.Ioo_inter_Ioc_of_left_le
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
(h : b₁ ≤ b₂)
:
theorem
Set.Ioo_inter_Ioc_of_right_lt
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
(h : b₂ < b₁)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]