Documentation

Mathlib.Order.Preorder.Finsupp

Pointwise order on finitely supported functions #

This file lifts order structures on M to ι →₀ M.

instance Finsupp.instLE {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
LE (ι →₀ M)
Equations
    theorem Finsupp.le_def {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
    f g ∀ (i : ι), f i g i
    @[simp]
    theorem Finsupp.coe_le_coe {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] {f g : ι →₀ M} :
    f g f g
    def Finsupp.orderEmbeddingToFun {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] :
    (ι →₀ M) ↪o (ιM)

    The order on Finsupps over a partial order embeds into the order on functions

    Equations
      Instances For
        @[simp]
        theorem Finsupp.orderEmbeddingToFun_apply {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] (f : ι →₀ M) (a : ι) :
        def Finsupp.orderIsoFunOnFinite {ι : Type u_1} {M : Type u_2} [Zero M] [LE M] [Finite ι] :
        (ι →₀ M) ≃o (ιM)

        equivFunOnFinite as an order isomorphism.

        Equations
          Instances For
            instance Finsupp.preorder {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
            Equations
              theorem Finsupp.lt_def {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
              f < g f g ∃ (i : ι), f i < g i
              @[simp]
              theorem Finsupp.coe_lt_coe {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] {f g : ι →₀ M} :
              f < g f < g
              theorem Finsupp.coe_mono {ι : Type u_1} {M : Type u_2} [Zero M] [Preorder M] :
              instance Finsupp.partialorder {ι : Type u_1} {M : Type u_2} [Zero M] [PartialOrder M] :
              Equations
                instance Finsupp.semilatticeInf {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] :
                Equations
                  @[simp]
                  theorem Finsupp.inf_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeInf M] (f g : ι →₀ M) (i : ι) :
                  (fg) i = f ig i
                  instance Finsupp.semilatticeSup {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] :
                  Equations
                    @[simp]
                    theorem Finsupp.sup_apply {ι : Type u_1} {M : Type u_2} [Zero M] [SemilatticeSup M] (f g : ι →₀ M) (i : ι) :
                    (fg) i = f ig i
                    instance Finsupp.lattice {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] :
                    Equations
                      theorem Finsupp.support_inf_union_support_sup {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
                      (fg).support (fg).support = f.support g.support
                      theorem Finsupp.support_sup_union_support_inf {ι : Type u_1} {M : Type u_2} [Zero M] [Lattice M] (f g : ι →₀ M) [DecidableEq ι] :
                      (fg).support (fg).support = f.support g.support