Documentation

Mathlib.Order.SetNotation

Notation classes for set supremum and infimum #

In this file we introduce notation for indexed suprema, infima, unions, and intersections.

Main definitions #

Notation #

class SupSet (α : Type u_1) :
Type u_1

Class for the sSup operator

  • sSup : Set αα

    Supremum of a set

Instances
    class InfSet (α : Type u_1) :
    Type u_1

    Class for the sInf operator

    • sInf : Set αα

      Infimum of a set

    Instances
      def iSup {α : Type u} {ι : Sort v} [SupSet α] (s : ια) :
      α

      Indexed supremum

      Equations
        Instances For
          def iInf {α : Type u} {ι : Sort v} [InfSet α] (s : ια) :
          α

          Indexed infimum

          Equations
            Instances For
              @[instance 50]
              instance infSet_to_nonempty (α : Type u_1) [InfSet α] :
              @[instance 50]
              instance supSet_to_nonempty (α : Type u_1) [SupSet α] :

              Indexed supremum.

              Equations
                Instances For

                  Indexed infimum.

                  Equations
                    Instances For

                      Delaborator for indexed supremum.

                      Equations
                        Instances For

                          Delaborator for indexed infimum.

                          Equations
                            Instances For
                              instance Set.instInfSet {α : Type u} :
                              InfSet (Set α)
                              Equations
                                instance Set.instSupSet {α : Type u} :
                                SupSet (Set α)
                                Equations
                                  def Set.sInter {α : Type u} (S : Set (Set α)) :
                                  Set α

                                  Intersection of a set of sets.

                                  Equations
                                    Instances For

                                      Notation for Set.sInter Intersection of a set of sets.

                                      Equations
                                        Instances For
                                          def Set.sUnion {α : Type u} (S : Set (Set α)) :
                                          Set α

                                          Union of a set of sets.

                                          Equations
                                            Instances For

                                              Notation for Set.sUnion. Union of a set of sets.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem Set.mem_sInter {α : Type u} {x : α} {S : Set (Set α)} :
                                                  x ⋂₀ S tS, x t
                                                  @[simp]
                                                  theorem Set.mem_sUnion {α : Type u} {x : α} {S : Set (Set α)} :
                                                  x ⋃₀ S tS, x t
                                                  def Set.iUnion {α : Type u} {ι : Sort v} (s : ιSet α) :
                                                  Set α

                                                  Indexed union of a family of sets

                                                  Equations
                                                    Instances For
                                                      def Set.iInter {α : Type u} {ι : Sort v} (s : ιSet α) :
                                                      Set α

                                                      Indexed intersection of a family of sets

                                                      Equations
                                                        Instances For

                                                          Notation for Set.iUnion. Indexed union of a family of sets

                                                          Equations
                                                            Instances For

                                                              Notation for Set.iInter. Indexed intersection of a family of sets

                                                              Equations
                                                                Instances For

                                                                  Delaborator for indexed unions.

                                                                  Equations
                                                                    Instances For

                                                                      Delaborator for indexed intersections.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem Set.mem_iUnion {α : Type u} {ι : Sort v} {x : α} {s : ιSet α} :
                                                                          x ⋃ (i : ι), s i ∃ (i : ι), x s i
                                                                          @[simp]
                                                                          theorem Set.mem_iInter {α : Type u} {ι : Sort v} {x : α} {s : ιSet α} :
                                                                          x ⋂ (i : ι), s i ∀ (i : ι), x s i
                                                                          @[simp]
                                                                          theorem Set.sSup_eq_sUnion {α : Type u} (S : Set (Set α)) :
                                                                          @[simp]
                                                                          theorem Set.sInf_eq_sInter {α : Type u} (S : Set (Set α)) :
                                                                          @[simp]
                                                                          theorem Set.iSup_eq_iUnion {α : Type u} {ι : Sort v} (s : ιSet α) :
                                                                          @[simp]
                                                                          theorem Set.iInf_eq_iInter {α : Type u} {ι : Sort v} (s : ιSet α) :