Documentation

Mathlib.Order.Shrink

Order instances on Shrink #

If α : Type v is u-small, we transport various order related instances on α to Shrink.{u} α.

noncomputable instance instBotShrink {α : Type u_1} [Small.{u, u_1} α] [Bot α] :
Equations
    noncomputable instance instTopShrink {α : Type u_1} [Small.{u, u_1} α] [Top α] :
    Equations
      @[simp]
      theorem equivShrink_bot {α : Type u_1} [Small.{u, u_1} α] [Bot α] :
      @[simp]
      theorem equivShrink_top {α : Type u_1} [Small.{u, u_1} α] [Top α] :
      noncomputable def orderIsoShrink (α : Type u_1) [Small.{u, u_1} α] [Preorder α] :

      The order isomorphism α ≃o Shrink.{u} α.

      Equations
        Instances For
          @[simp]
          theorem orderIsoShrink_apply {α : Type u_1} [Small.{u, u_1} α] [Preorder α] (a : α) :
          @[simp]
          theorem equivShrink_le_equivShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] {x y : α} :
          (equivShrink α) x (equivShrink α) y x y
          @[simp]
          theorem equivShrink_lt_equivShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] {x y : α} :
          (equivShrink α) x < (equivShrink α) y x < y
          noncomputable instance instOrderBotShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [OrderBot α] :
          Equations
            noncomputable instance instOrderTopShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [OrderTop α] :
            Equations
              noncomputable instance instSuccOrderShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [SuccOrder α] :
              Equations
                noncomputable instance instPredOrderShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [PredOrder α] :
                Equations
                  noncomputable instance instLinearOrderShrink {α : Type u_1} [Small.{u, u_1} α] [LinearOrder α] :
                  Equations