Documentation

Mathlib.Probability.Decision.Risk.Defs

Risk of an estimator #

An estimation problem is defined by a parameter space Θ, a data generating kernel P : Kernel Θ š“§ and a loss function ā„“ : Θ → š“Ø → ā„ā‰„0āˆž. A (randomized) estimator is a kernel Īŗ : Kernel š“§ š“Ø that maps data to estimates of a quantity of interest that depends on the parameter. Often the quantity of interest is the parameter itself and š“Ø = Θ. The quality of an estimate y when data comes from the distribution with parameter Īø is measured by the value of the loss function ā„“ Īø y (lower is better).

Main definitions #

The risk is the average loss of the estimator Īŗ on data generated by P with parameter Īø, equal to ∫⁻ y, ā„“ Īø y āˆ‚((Īŗ āˆ˜ā‚– P) Īø). We do not introduce a definition for that risk, but we refer to that integral as risk in lemma names.

noncomputable def ProbabilityTheory.avgRisk {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) (Īŗ : Kernel š“§ š“Ø) (Ļ€ : MeasureTheory.Measure Θ) :

The average risk of an estimator κ on an estimation task with loss ℓ and data generating kernel P with respect to a prior π.

Equations
    Instances For
      noncomputable def ProbabilityTheory.bayesRisk {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} [MeasurableSpace š“Ø] (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) (Ļ€ : MeasureTheory.Measure Θ) :

      The Bayes risk with respect to a prior π, defined as the infimum of the average risks of all estimators.

      Equations
        Instances For
          noncomputable def ProbabilityTheory.minimaxRisk {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} [MeasurableSpace š“Ø] (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) :

          The minimax risk, defined as the infimum over estimators of the maximal risk of the estimator.

          Equations
            Instances For
              @[simp]
              theorem ProbabilityTheory.avgRisk_zero_left {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} (ā„“ : Θ → š“Ø → ENNReal) (Īŗ : Kernel š“§ š“Ø) (Ļ€ : MeasureTheory.Measure Θ) :
              avgRisk ℓ 0 κ π = 0
              @[simp]
              theorem ProbabilityTheory.avgRisk_zero_right {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) (Ļ€ : MeasureTheory.Measure Θ) :
              avgRisk ℓ P 0 π = 0
              @[simp]
              theorem ProbabilityTheory.avgRisk_zero_prior {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) (Īŗ : Kernel š“§ š“Ø) :
              avgRisk ā„“ P Īŗ 0 = 0
              @[simp]
              theorem ProbabilityTheory.bayesRisk_zero_left {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} [Nonempty š“Ø] (ā„“ : Θ → š“Ø → ENNReal) (Ļ€ : MeasureTheory.Measure Θ) :
              bayesRisk ℓ 0 π = 0
              @[simp]
              theorem ProbabilityTheory.bayesRisk_zero_right {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} [Nonempty š“Ø] (ā„“ : Θ → š“Ø → ENNReal) (P : Kernel Θ š“§) :
              bayesRisk ā„“ P 0 = 0
              @[simp]
              theorem ProbabilityTheory.minimaxRisk_zero {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} [Nonempty š“Ø] (ā„“ : Θ → š“Ø → ENNReal) :
              minimaxRisk ā„“ 0 = 0
              @[simp]
              theorem ProbabilityTheory.avgRisk_of_isEmpty {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Īŗ : Kernel š“§ š“Ø} {Ļ€ : MeasureTheory.Measure Θ} [IsEmpty š“§] :
              avgRisk ℓ P κ π = 0
              @[simp]
              theorem ProbabilityTheory.avgRisk_of_isEmpty' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Īŗ : Kernel š“§ š“Ø} {Ļ€ : MeasureTheory.Measure Θ} [IsEmpty š“Ø] :
              avgRisk ℓ P κ π = 0
              @[simp]
              theorem ProbabilityTheory.avgRisk_of_isEmpty'' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Īŗ : Kernel š“§ š“Ø} {Ļ€ : MeasureTheory.Measure Θ} [IsEmpty Θ] :
              avgRisk ℓ P κ π = 0
              @[simp]
              theorem ProbabilityTheory.bayesRisk_of_isEmpty {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Ļ€ : MeasureTheory.Measure Θ} [IsEmpty š“§] :
              bayesRisk ℓ P π = 0
              @[simp]
              theorem ProbabilityTheory.bayesRisk_of_isEmpty' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Ļ€ : MeasureTheory.Measure Θ} [Nonempty š“§] [IsEmpty š“Ø] :
              bayesRisk ā„“ P Ļ€ = ⊤
              @[simp]
              theorem ProbabilityTheory.bayesRisk_of_isEmpty'' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} {Ļ€ : MeasureTheory.Measure Θ} [IsEmpty Θ] [Nonempty š“Ø] :
              bayesRisk ℓ P π = 0
              @[simp]
              theorem ProbabilityTheory.minimaxRisk_of_isEmpty {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} [IsEmpty š“§] :
              minimaxRisk ā„“ P = 0
              @[simp]
              theorem ProbabilityTheory.minimaxRisk_of_isEmpty' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} [Nonempty š“§] [IsEmpty š“Ø] :
              @[simp]
              theorem ProbabilityTheory.minimaxRisk_of_isEmpty'' {Θ : Type u_1} {š“§ : Type u_2} {š“Ø : Type u_3} {mΘ : MeasurableSpace Θ} {mš“§ : MeasurableSpace š“§} {mš“Ø : MeasurableSpace š“Ø} {ā„“ : Θ → š“Ø → ENNReal} {P : Kernel Θ š“§} [Nonempty š“Ø] [IsEmpty Θ] :
              minimaxRisk ā„“ P = 0