Documentation

Mathlib.Probability.Distributions.Beta

Beta distributions over ℝ #

Define the beta distribution over the reals.

Main definitions #

noncomputable def ProbabilityTheory.beta (α β : ) :

The normalizing constant in the beta distribution.

Equations
    Instances For
      theorem ProbabilityTheory.beta_pos {α β : } ( : 0 < α) ( : 0 < β) :
      0 < beta α β
      theorem ProbabilityTheory.beta_eq_betaIntegralReal (α β : ) ( : 0 < α) ( : 0 < β) :
      beta α β = ((↑α).betaIntegral β).re

      Relation between the beta function and the gamma function over the reals.

      noncomputable def ProbabilityTheory.betaPDFReal (α β x : ) :

      The probability density function of the beta distribution with shape parameters α and β. Returns (1 / beta α β) * x ^ (α - 1) * (1 - x) ^ (β - 1) when 0 < x < 1 and 0 otherwise.

      Equations
        Instances For
          noncomputable def ProbabilityTheory.betaPDF (α β x : ) :

          The pdf of the beta distribution, as a function valued in ℝ≥0∞.

          Equations
            Instances For
              theorem ProbabilityTheory.betaPDF_eq (α β x : ) :
              betaPDF α β x = ENNReal.ofReal (if 0 < x x < 1 then 1 / beta α β * x ^ (α - 1) * (1 - x) ^ (β - 1) else 0)
              theorem ProbabilityTheory.betaPDF_of_pos_lt_one {α β x : } (hx_pos : 0 < x) (hx_lt : x < 1) :
              betaPDF α β x = ENNReal.ofReal (1 / beta α β * x ^ (α - 1) * (1 - x) ^ (β - 1))
              theorem ProbabilityTheory.lintegral_betaPDF {α β : } :
              ∫⁻ (x : ), betaPDF α β x = ∫⁻ (x : ) in Set.Ioo 0 1, ENNReal.ofReal (1 / beta α β * x ^ (α - 1) * (1 - x) ^ (β - 1))
              theorem ProbabilityTheory.betaPDFReal_pos {α β x : } (hx1 : 0 < x) (hx2 : x < 1) ( : 0 < α) ( : 0 < β) :
              0 < betaPDFReal α β x

              The beta pdf is positive for all positive reals with positive parameters.

              The beta pdf is measurable.

              @[simp]
              theorem ProbabilityTheory.lintegral_betaPDF_eq_one {α β : } ( : 0 < α) ( : 0 < β) :
              ∫⁻ (x : ), betaPDF α β x = 1

              The pdf of the beta distribution integrates to 1.

              Measure defined by the beta distribution.

              Equations
                Instances For