Invariance of measures along a kernel #
We say that a measure μ is invariant with respect to a kernel κ if its push-forward along the
kernel μ.bind κ is the same measure.
Main definitions #
ProbabilityTheory.Kernel.Invariant: invariance of a given measure with respect to a kernel.
Invariant measures of kernels #
def
ProbabilityTheory.Kernel.Invariant
{α : Type u_1}
{mα : MeasurableSpace α}
(κ : Kernel α α)
(μ : MeasureTheory.Measure α)
:
A measure μ is invariant with respect to the kernel κ if the push-forward measure of μ
along κ equals μ.
Equations
Instances For
theorem
ProbabilityTheory.Kernel.Invariant.def
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : Kernel α α}
{μ : MeasureTheory.Measure α}
(hκ : κ.Invariant μ)
:
theorem
ProbabilityTheory.Kernel.Invariant.comp_const
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : Kernel α α}
{μ : MeasureTheory.Measure α}
(hκ : κ.Invariant μ)
:
theorem
ProbabilityTheory.Kernel.Invariant.comp
{α : Type u_1}
{mα : MeasurableSpace α}
{κ η : Kernel α α}
{μ : MeasureTheory.Measure α}
(hκ : κ.Invariant μ)
(hη : η.Invariant μ)
:
Reversibility of kernels #
def
ProbabilityTheory.Kernel.IsReversible
{α : Type u_1}
{mα : MeasurableSpace α}
(κ : Kernel α α)
(π : MeasureTheory.Measure α)
:
Reversibility (detailed balance) of a Markov kernel κ w.r.t. a measure π:
for all measurable sets A B, the mass flowing from A to B equals that from B to A.
Equations
Instances For
theorem
ProbabilityTheory.Kernel.IsReversible.invariant
{α : Type u_1}
{mα : MeasurableSpace α}
{κ : Kernel α α}
[IsMarkovKernel κ]
{π : MeasureTheory.Measure α}
(h_rev : κ.IsReversible π)
:
κ.Invariant π
A reversible Markov kernel leaves the measure π invariant.