Documentation

Mathlib.Probability.Kernel.Invariance

Invariance of measures along a kernel #

We say that a measure μ is invariant with respect to a kernel κ if its push-forward along the kernel μ.bind κ is the same measure.

Main definitions #

Invariant measures of kernels #

A measure μ is invariant with respect to the kernel κ if the push-forward measure of μ along κ equals μ.

Equations
    Instances For
      theorem ProbabilityTheory.Kernel.Invariant.def {α : Type u_1} { : MeasurableSpace α} {κ : Kernel α α} {μ : MeasureTheory.Measure α} ( : κ.Invariant μ) :
      μ.bind κ = μ
      theorem ProbabilityTheory.Kernel.Invariant.comp_const {α : Type u_1} { : MeasurableSpace α} {κ : Kernel α α} {μ : MeasureTheory.Measure α} ( : κ.Invariant μ) :
      κ.comp (const α μ) = const α μ
      theorem ProbabilityTheory.Kernel.Invariant.comp {α : Type u_1} { : MeasurableSpace α} {κ η : Kernel α α} {μ : MeasureTheory.Measure α} ( : κ.Invariant μ) ( : η.Invariant μ) :
      (κ.comp η).Invariant μ

      Reversibility of kernels #

      Reversibility (detailed balance) of a Markov kernel κ w.r.t. a measure π: for all measurable sets A B, the mass flowing from A to B equals that from B to A.

      Equations
        Instances For
          theorem ProbabilityTheory.Kernel.IsReversible.invariant {α : Type u_1} { : MeasurableSpace α} {κ : Kernel α α} [IsMarkovKernel κ] {π : MeasureTheory.Measure α} (h_rev : κ.IsReversible π) :
          κ.Invariant π

          A reversible Markov kernel leaves the measure π invariant.