Documentation

Mathlib.RepresentationTheory.Subrepresentation

Subrepresentations #

This file defines subrepresentations of a monoid representation.

structure Subrepresentation {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] (ρ : Representation A G W) :
Type u_3

A subrepresentation of G of the A-module W is a submodule of W which is stable under the G-action.

Instances For
    instance Subrepresentation.instSetLike {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
    Equations
      instance Subrepresentation.instPartialOrder {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
      Equations
        def Subrepresentation.toRepresentation {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ' : Subrepresentation ρ) :

        A subrepresentation is a representation.

        Equations
          Instances For
            instance Subrepresentation.instMax {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
            Equations
              instance Subrepresentation.instMin {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
              Equations
                @[simp]
                theorem Subrepresentation.coe_sup {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
                (ρ₁ρ₂) = ρ₁ + ρ₂
                @[simp]
                theorem Subrepresentation.coe_inf {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
                (ρ₁ρ₂) = ρ₁ ρ₂
                @[simp]
                theorem Subrepresentation.toSubmodule_sup {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
                (ρ₁ρ₂).toSubmodule = ρ₁.toSubmoduleρ₂.toSubmodule
                @[simp]
                theorem Subrepresentation.toSubmodule_inf {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (ρ₁ ρ₂ : Subrepresentation ρ) :
                (ρ₁ρ₂).toSubmodule = ρ₁.toSubmoduleρ₂.toSubmodule
                instance Subrepresentation.instLattice {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
                Equations
                  instance Subrepresentation.instBoundedOrder {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} :
                  Equations
                    def Subrepresentation.asSubmodule {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (σ : Subrepresentation ρ) :

                    A subrepresentation of ρ can be thought of as an A[G] submodule of ρ.asModule.

                    Equations
                      Instances For
                        @[simp]
                        theorem Subrepresentation.mem_asSubmodule_iff {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} {σ : Subrepresentation ρ} {v : W} :

                        A subrepresentation of ofModule M can be thought of as an A[G] submodule of M.

                        Equations
                          Instances For

                            A submodule of an A[G]-module M can be thought of as a subrepresentation of ofModule M.

                            Equations
                              Instances For
                                @[simp]
                                theorem Subrepresentation.mem_ofSubmodule_iff {A : Type u_1} {G : Type u_2} {M : Type u_4} [CommRing A] [Monoid G] [AddCommMonoid M] [Module (MonoidAlgebra A G) M] {N : Submodule (MonoidAlgebra A G) M} {m : M} :
                                def Subrepresentation.ofSubmodule' {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} (N : Submodule (MonoidAlgebra A G) ρ.asModule) :

                                An A[G]-submodule of ρ.asModule can be thought of as a subrepresentation of ρ.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem Subrepresentation.mem_ofSubmodule'_iff {A : Type u_1} {G : Type u_2} {W : Type u_3} [CommRing A] [Monoid G] [AddCommMonoid W] [Module A W] {ρ : Representation A G W} {N : Submodule (MonoidAlgebra A G) ρ.asModule} {w : W} :

                                    An order-preserving equivalence between subrepresentations of ρ and submodules of ρ.asModule.

                                    Equations
                                      Instances For

                                        An order-preserving equivalence between A[G]-submodules of an A[G]-module M and subrepresentations of ρ.

                                        Equations
                                          Instances For