Documentation

Mathlib.RingTheory.Bialgebra.GroupLike

Group-like elements in a bialgebra #

This file proves that group-like elements in a bialgebra form a monoid.

theorem IsGroupLikeElem.one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :

In a bialgebra, 1 is a group-like element.

theorem IsGroupLikeElem.mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (ha : IsGroupLikeElem R a) (hb : IsGroupLikeElem R b) :

Group-like elements in a bialgebra are stable under multiplication.

def groupLikeSubmonoid (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] :

The group-like elements form a submonoid.

Equations
    Instances For
      theorem IsGroupLikeElem.pow {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a : A} {n : โ„•} (ha : IsGroupLikeElem R a) :

      Group-like elements in a bialgebra are stable under power.

      theorem IsGroupLikeElem.of_mul_eq_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (hab : a * b = 1) (hba : b * a = 1) (ha : IsGroupLikeElem R a) :

      Group-like elements in a bialgebra are stable under inverses, when they exist.

      theorem isGroupLikeElem_iff_of_mul_eq_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {a b : A} (hab : a * b = 1) (hba : b * a = 1) :

      Group-like elements in a bialgebra are stable under inverses, when they exist.

      theorem IsGroupLikeElem.of_unitsInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {u : Aหฃ} :
      IsGroupLikeElem R โ†‘uโปยน โ†’ IsGroupLikeElem R โ†‘u

      Alias of the forward direction of isGroupLikeElem_unitsInv.

      theorem IsGroupLikeElem.unitsInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] {u : Aหฃ} :
      IsGroupLikeElem R โ†‘u โ†’ IsGroupLikeElem R โ†‘uโปยน

      Alias of the reverse direction of isGroupLikeElem_unitsInv.

      instance GroupLike.instOne {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
      Equations
        instance GroupLike.instMul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
        Equations
          instance GroupLike.instPowNat {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
          Equations
            @[simp]
            theorem GroupLike.val_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
            โ†‘1 = 1
            @[simp]
            theorem GroupLike.val_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] (a b : GroupLike R A) :
            โ†‘(a * b) = โ†‘a * โ†‘b
            @[simp]
            theorem GroupLike.val_pow {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] (a : GroupLike R A) (n : โ„•) :
            โ†‘(a ^ n) = โ†‘a ^ n
            instance GroupLike.instMonoid {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] :
            Equations
              def GroupLike.valMonoidHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] :

              GroupLike.val as a monoid hom.

              Equations
                Instances For
                  @[simp]
                  theorem GroupLike.valMonoidHom_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] (self : GroupLike R A) :
                  (valMonoidHom R A) self = โ†‘self