Documentation

Mathlib.RingTheory.Coalgebra.Convolution

Convolution product on linear maps from a coalgebra to an algebra #

This file constructs the ring structure on linear maps C → A where C is a coalgebra and A an algebra, where multiplication is given by (f * g)(x) = ∑ f x₍₁₎ * g x₍₂₎ in Sweedler notation or

         |
         μ
|   |   / \
f * g = f g
|   |   \ /
         δ
         |

diagrammatically, where μ stands for multiplication and δ for comultiplication.

Implementation notes #

Because there is a global multiplication instance on Module.End R A (defined as composition), which is mathematically distinct from this product, we provide this instance on WithConv (C →ₗ[R] A).

noncomputable instance LinearMap.convMul {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] :

Convolution product on linear maps from a coalgebra to an algebra.

Equations
    @[simp]
    theorem LinearMap.convMul_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] (f g : WithConv (C →ₗ[R] A)) (c : C) :
    theorem Coalgebra.Repr.convMul_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] {a : C} (𝓡 : Repr R a) (f g : WithConv (C →ₗ[R] A)) :
    (f * g).ofConv a = i𝓡.index, f.ofConv (𝓡.left i) * g.ofConv (𝓡.right i)

    Non-unital and non-associative convolution semiring structure on linear maps from a coalgebra to a non-unital non-associative algebra.

    Equations
      noncomputable instance LinearMap.convNonUnitalNonAssocRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalNonAssocRing A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [CoalgebraStruct R C] :

      Non-unital and non-associative convolution ring structure on linear maps from a coalgebra to a non-unital and non-associative algebra.

      Equations
        noncomputable instance LinearMap.convNonUnitalSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :

        Non-unital convolution semiring structure on linear maps from a coalgebra to a non-unital algebra.

        Equations
          noncomputable instance LinearMap.convNonUnitalRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [NonUnitalRing A] [AddCommMonoid C] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [Module R C] [Coalgebra R C] :

          Non-unital convolution ring structure on linear maps from a coalgebra to a non-unital algebra.

          Equations
            noncomputable instance LinearMap.convOne {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :

            Convolution unit on linear maps from a coalgebra to an algebra.

            Equations
              @[simp]
              theorem LinearMap.convOne_apply {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] (c : C) :
              noncomputable instance LinearMap.convSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid C] [Module R C] [Coalgebra R C] :

              Convolution semiring structure on linear maps from a coalgebra to an algebra.

              Equations
                noncomputable instance LinearMap.convCommSemiring {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] [Coalgebra.IsCocomm R C] :

                Commutative convolution semiring structure on linear maps from a cocommutative coalgebra to an algebra.

                Equations
                  noncomputable instance LinearMap.convRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [Ring A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] :

                  Convolution ring structure on linear maps from a coalgebra to an algebra.

                  Equations
                    noncomputable instance LinearMap.convCommRing {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommRing A] [AddCommMonoid C] [Algebra R A] [Module R C] [Coalgebra R C] [Coalgebra.IsCocomm R C] :

                    Commutative convolution ring structure on linear maps from a cocommutative coalgebra to an algebra.

                    Equations